High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi
2009-09-01
The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.
Li, Peng; Jin, Feng
2018-01-01
The dynamic model about the anti-plane vibration of a contoured quartz plate with thickness changing continuously is established by ignoring the effect of small elastic constant c 56. The governing equation is solved using the power series expansion technique, and the trapped thickness shear modes caused by bulge thickness are revealed. Theoretically, the proposed method is more general, which can be capable of handling various thickness profiles defined mathematically. After the convergence of the series is demonstrated and the correctness is numerically validated with the aid of finite element method results, systematic parametric studies are subsequently carried out to quantify the effects of the geometry parameter upon the trapped modes, including resonant frequency and mode shape. After that, the band structures of thickness shear waves propagation in a periodically contoured quartz plate, as well as the power transmission spectra, are obtained based on the power series expansion technique. It is revealed that broad stop bands below cut-off frequency exist owing to the trapped modes excited by the geometry inhomogeneity, which has little relationship with the structural periodicity, and its physical mechanism is different from the Bragg scattering effect. The outcome is widely applicable, and can be utilized to provide theoretical and practical guidance for the design and manufacturing of quartz resonators and wave filters.
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
Dong H.
2010-01-01
Experimental investigation to the effects of thickness and material on mode II fracture were performed. Tension-shear specimens made of aluminium alloy LC4CS and 7050-T7452 with thicknesses of 2, 4, 8 and 14 mm were used. All crack tip appearances and fracture profiles of the specimens were observed. Mode II fracture toughness were calculated. It is shown that material and thickness play an important role in mode II fracture. The fracture of LC4CS appears shear fracture under all kinds ...
Pardo, Lorena; García, Alvaro; de Espinosa, Francisco Montero; Brebøl, Klaus
2011-03-01
The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.
Magnetorheological dampers in shear mode
International Nuclear Information System (INIS)
Wereley, N M; Cho, J U; Choi, Y T; Choi, S B
2008-01-01
In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared
Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J
2000-01-01
We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.
Ballooning mode stabilization by moderate sheared rotation
International Nuclear Information System (INIS)
Hameiri, E.
1996-01-01
Sheared toroidal plasma rotation has been known for some time to have a stabilizing effect on the ballooning modes. A recent calculation showed that a large flow shear, with dΩ/dq of the order of the Alfven toroidal frequency, can stabilize the ballooning modes. This latest result is, in fact, not so optimistic. For observed flows with Mach number of order unity one gets dΩ/dq smaller by a factor O(√β) from the required level (if the flow shear length is of the same order as the magnetic shear length). Moreover, the calculation does not take into account a possibly large transient growth of the mode amplitude due to its Floquet structures We show here that, in fact, there is a general tendency of the ballooning mode to stabilize as soon as the flow shear dΩ/dq exceeds the (O√β smaller) open-quotes slowclose quotes magnetosonic wave frequency. Our analysis is perturbative, where the small parameter is related to the small coupling between the slow and Alfven waves-as is the case in a high aspect-ratio tokamak. (In the perturbation it is important to take the Hamiltonian nature of the governing equations into account.) Moreover, our results apply to the relevant transient growth of the mode amplitude
Stabilization of ballooning modes with sheared toroidal rotation
International Nuclear Information System (INIS)
Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.
1995-01-01
Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics
Piezoelectric energy harvesting through shear mode operation
International Nuclear Information System (INIS)
Malakooti, Mohammad H; Sodano, Henry A
2015-01-01
Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)
Directory of Open Access Journals (Sweden)
Pedro Castro
2017-06-01
Full Text Available This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and dissipation factor that vary in contact with the analyzed sample. This work shows that different variations during the microorganism growth can be detected by the sensors and highlights which of these changes are indicative of biofilm formation. TSM sensors have been used to monitor in real time the development of Staphylococcus epidermidis and Escherichia coli biofilms, formed on the gold electrode of the quartz crystal resonators, without any coating. Strains with different ability to produce biofilm have been tested. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to upper layers of the biofilm. The experiments allow the microrheological evaluation of the complex shear modulus (G* = G′ + jG″ of the biofilm at 5 MHz and at 15 MHz, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of S. epidermidis and E. coli, is an increase in the resonance frequency shift of the quartz crystal sensor, which is connected with an increase of the real shear modulus, related to the elasticity or stiffness of the layer. In addition both the real and the imaginary shear modulus are frequency dependent at these high frequencies in biofilms.
International Nuclear Information System (INIS)
Jiquan Li; Kishimoto, Y.; Tuda, T.
2000-01-01
The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)
Stabilization of ballooning modes with sheared toroidal rotation
International Nuclear Information System (INIS)
Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.
1994-11-01
A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency ω A = V A /qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode
Low-rise shear wall failure modes
International Nuclear Information System (INIS)
Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.
1991-01-01
A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs
Flow shear stabilization of hybrid electron-ion drift mode in tokamaks
International Nuclear Information System (INIS)
Bai, L.
1999-01-01
In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)
Flow shear stabilization of hybrid electron-ion drift mode in tokamaks
International Nuclear Information System (INIS)
Bai, L.
2001-01-01
In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)
Effect of sheared flows on neoclassical tearing modes
Energy Technology Data Exchange (ETDEWEB)
Sen, A [Institute for Plasma Research, Bhat, Gandhinagar (India); Chandra, D; Kaw, P [Institute for Plasma Research, Bhat, Gandhinagar (India); Bora, M P [Physics Dept., Gauhati University, Guwahati (India); Kruger, S [Tech-X, Boulder, CO (United States); Ramos, J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States)
2005-01-01
The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)
Dong, Huiru; Guo, Wanlin; Yu, Liang
2002-05-01
The influence of thickness and mixed mode I/II loading on the crack initial angle of aluminum LC4-CS plates of 2, 4, 8 and 14 mm thickness was investigated experimentally from tensile-tearing testing of the compact-tension-shear type specimens. Experimental results of the crack initial angle for various thickness plates and load mode mixity were presented, and compared with theoretical predictions form the maximum tangential stress criterion and the maximum triaxial stress criterion. The crack initial angle is found to vary not only with load mode mixity but also with specimen thickness. The experimental result show a god agreement with theoretical predictions in 2, 14 mm- thickness specimens but a great deal difference in 8 mm-thickness specimens. The results are discussed in the viewpoint of 3D failure theory.
Failure modes of low-rise shear walls
International Nuclear Information System (INIS)
Farrar, C.R.; Reed, J.W.; Salmon, M.W.
1993-01-01
A summary of available data concerning the structural response of low-rise shear walls is presented. These data will be used to address two failure modes associated with shear wall structures. First, the data concerning the seismic capacity of the shear walls are examined, with emphasis on excessive deformations that can cause equipment failure. Second, the data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary for computing the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional
High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear
International Nuclear Information System (INIS)
Nakajima, N.
1996-05-01
The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems
Mean E×B shear effect on geodesic acoustic modes in Tokamaks
International Nuclear Information System (INIS)
Singh, Rameswar; Gurcan, Ozgur D.
2015-01-01
E × B shearing effect on geodesic acoustic mode (GAM) is investigated for the first time both as an initial value problem in the shearing frame and as an eigenvalue value problem in the lab frame. The nontrivial effects are that E × B shearing couples the standard GAM perturbations to their complimentary poloidal parities. The resulting GAM acquires an effective inertia increasing in time leading to GAM damping. Eigenmode analysis shows that GAMs are radially localized by E × B shearing with the mode width being inversely proportional and radial wave number directly proportional to the shearing rate for weak shear. (author)
Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash
International Nuclear Information System (INIS)
Xi, P. W.; Xu, X. Q.; Wang, X. G.; Xia, T. Y.
2012-01-01
The E × B shear flow plays a dual role on peeling-ballooning modes and their subsequently triggered edge localized mode (ELM) crashes. On one hand, the flow shear can stabilize high-n modes and twist the mode in the poloidal direction, constraining the mode's radial extent and reducing the size of the corresponding ELM. On the other hand, the shear flow also introduces the Kelvin-Helmholtz drive, which can destabilize peeling-ballooning modes. The overall effect of equilibrium shear flow on peeling-ballooning modes and ELM crashes depends on the competition between these two effects. When the flow shear is either small or very large, it can reduce ELM size. However, for moderate values of flow shear, the destabilizing effect from the Kelvin-Helmholtz term is dominant and leads to larger ELM crashes.
International Nuclear Information System (INIS)
Guzdar, P.N.; Drake, J.F.
1993-01-01
The generation of shear flow by resistive ballooning modes and resistive interchange modes is compared and contrasted using a 3-D fluid code. The resistive ballooning modes give rise to poloidally asymmetric transport and hence drive poloidal rotation due to the Reynold's Stress as well as the anomalous Stringer/Winsor mechanism. On the other hand the resistive interchange mode can drive shear flow only through the Reynold's Stress. The studies show that if the self-consistent sheared flow is suppressed, the resistive ballooning modes give rise to a larger anomalous transport than produced by the resistive interchange modes. Furthermore the shear flow generated by the resistive ballooning modes is larger than that driven by the resistive interchange modes due to the combined effect of the dual mechanisms stated earlier. As a consequence strong suppression of the fluctuations as well as reduction of the transport occurs for resistive ballooning modes. On the other hand, for the resistive interchange modes the level of fluctuation as well as the anomalous transport is not reduced by the self consistent shear flow generated by the Reynold's Stress. This latter result is in agreement with some earlier 3-D simulation of resistive interchange modes
International Nuclear Information System (INIS)
Lim, Teik-Cheng
2016-01-01
For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)
Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice
Piliposyan, Davit
2018-01-01
Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.
Effect of soft mode on shear viscosity of quark matter
International Nuclear Information System (INIS)
Fukutome, Takahiko; Iwasaki, Masaharu
2008-01-01
We calculate the shear viscosity of quark matter at finite temperature and density. If we assume that the quark interacts with the soft mode, which is a collective mode of a quark-antiquark pair, the self-energy of the quark is calculated by quasi-particle random phase approximation. It is shown that its imaginary part is large and its mean free path is short. With the use of the Kubo formula, the shear viscosity of quark matter decreases. The Reynolds number of quark matter is estimated to be about 10. As temperature increases, shear viscosity increases gradually for T>200 MeV. Moreover it is shown that the shear viscosity also increases with the chemical potential for μ>200 MeV. (author)
Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion
DEFF Research Database (Denmark)
Sivebæk, I. M.; Persson, B. N. J.
2016-01-01
We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...
Shear flow generation by Reynolds stress and suppression of resistive g-modes
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1993-08-01
Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter ν which is given by neoclassical theory. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small ν, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence
Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.
Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning
2012-11-01
Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
Shear flow generation by Reynolds stress and suppression of resistive g modes
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1993-01-01
The authors have investigated suppression of the resistive g mode turbulence by background shear flow produced by the external source and by the fluctuation-induced Reynolds stress. For that purpose, the authors used the model consisting of the equations describing the electrostatic potential φ≡(φ 0 +φ) and the pressure fluctuation p of the resistive g mode, and the equation for the background poloidal flow. They have done the single-helicity nonlinear simulations using the model equations in the sheared slab configuration. They find that, in the nonlinear turbulent regime, significant suppression of the turbulent transport is realized only when the shear flow v' E exceeds that which makes the fastest-growing linear modes marginally stable. With the shear flow which decreases the fastest linear growth rates by about a half, the turbulent transport in the saturated state is about the same as in the case of no shear flow. As seen from the equation for the background flow v E , the relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the parameter ν. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow although its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. On the other hand, for small ν, they observe that, as the fluctuations grow, the Reynolds stress becomes large and suddenly at some critical point in time shear flow much larger than the external one is generated and leads to the significant reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is remarkable that the Reynolds stress due to the resistive g mode fluctuations works not as a conventional viscosity term weakening the shear flow but as a negative viscosity term enhancing it
Ideal MHD stability properties of pressure-driven modes in low shear tokamaks
International Nuclear Information System (INIS)
Manickam, J.; Pomphrey, N.; Todd, A.M.M.
1987-03-01
The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs
Fourier band-power E/B-mode estimators for cosmic shear
Energy Technology Data Exchange (ETDEWEB)
Becker, Matthew R.; Rozo, Eduardo
2016-01-20
We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compact and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.
Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji
2017-01-01
Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)
2013-12-16
Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.
International Nuclear Information System (INIS)
Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng
2013-01-01
Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully
Nonlinear coupling of the resistive tearing modes under the unperturbed shear flow
International Nuclear Information System (INIS)
Urata, Kazuhiro
1990-01-01
The influence of the unperturbed shear flow on the nonlinear evolution of the tearing mode is studied. In the case of single helicity, the shear flow activates the unstable mode which finally saturates to a rigid rotor state. In the case of multiple helicity, a variety of flow patterns is created depending on parameters, and always forms the current bubble soon after the collapse of the 3/2 magnetic island. (author)
Energy spectrum of tearing mode turbulence in sheared background field
Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min
2018-06-01
The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.
International Nuclear Information System (INIS)
Lao, L.L.; Burrell, K.H.; Casper, T.S.
1996-08-01
The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity
Directory of Open Access Journals (Sweden)
Mohammad Javad Moghaddas
2017-09-01
Full Text Available Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength to enamel. Methods: In this laboratory study, 208 sound bovine incisors were equally divided into 16 groups (n = 13. The lithium disilicate ceramic cubes in four thicknesses (0.4, 0.6, 0.8 and 1 mm with four translucencies (high and medium opaque, high and low translucent were fabricated and bonded to prepared enamel surfaces using a light-cured translucent resin cement according to manufacturer recommendations. After 5000 cycles of thermocycling, the bonded specimens were placed in a universal testing machine and loaded to the point of fracture. To determine the mode of failure, each sample was observed under a stereomicroscope. Data were recorded and analyzed by Shapiro-Wilk test and two-way analysis of variance (ANOVA. Results: The ceramic thickness and translucency could not significantly affect shear bond strength (SBS of resin cement to enamel (p = 0.17 and p = 0.097, respectively. The Adhesive and ceramic cohesive failures were reported as the maximum and minimum mode of failure, respectively. Conclusion: The SBS of the light-cured resin cement bonding to enamel and lithium disilicate ceramic was not affected by the translucency of ceramics having a thickness of less than 1 mm.
Tearing mode growth in a regime of weak magnetic shear
International Nuclear Information System (INIS)
Riyopoulos, S.; Hazeltine, R.D.
1987-06-01
The nonlinear growth for the m/n ≥ 2 resistive tearing mode is studied in case when the rational surface q(r 0 ) = m/n falls in a regime of weak magnetic shear, q'(r 0 ) ≅ 0. The island width is determined self-consistently from the nonlinear, zero-helicity component of the perturbed magnetic flux that provides the local shear. It is found that the magnetic perturbation keeps growing exponentially in the nonlinear regime on a hybrid resistive-Alfvenic time scale, while the island width and the vorticity grow on a much slower time scale. Accordingly, much faster release of magnetic energy results for modes growing near minima of hollow q profiles
Eigenmode characteristics of the double tearing mode in the presence of shear flows
International Nuclear Information System (INIS)
Mao Aohua; Li Jiquan; Kishimoto, Y.; Liu Jinyuan
2013-01-01
The double tearing mode (DTM) is characterized by two eigen states with antisymmetric or symmetric magnetic island structure, referred to as the even or odd DTM. In this work, we systematically revisit the DTM instabilities in the presence of an antisymmetric shear flow with a focus on eigenmode characteristics as well as the stabilization or destabilization mechanism in a wide parameter region. Both initial value simulation and eigenvalue analysis are performed based on reduced resistive MHD model in slab geometry. A degenerated eigen state is found at a critical flow amplitude v c . The even (or odd) DTM is stabilized (or destabilized) by weak shear flow below v c through the distortion of magnetic islands mainly due to the global effect of shear flow rather than the local flow shear. The distortion can be quantified by the phase angles of the perturbed flux, showing a perfect correspondence to the growth rates. As the shear flow increases above v c , the degenerated eigen state bifurcates into two eigen modes with the same growth rate but opposite propagating direction, resulting in an oscillatory growth of fluctuation energy. It is identified that two eigen modes show the single tearing mode structure due to the Alfvén resonance (AR) occurring on one current sheet. Most importantly, the AR can destabilize the DTMs through enhancing the plasma flow exerting on the remaining island. Meanwhile, the local flow shear plays a remarkable stabilizing role in this region. In addition, the eigenmode characteristic of the electromagnetic Kelvin-Helmholtz instability is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Amann, Christian P., E-mail: Christian.2.Amann@uni-konstanz.de; Fuchs, Matthias, E-mail: Matthias.Fuchs@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany); Denisov, Dmitry; Dang, Minh Triet; Schall, Peter [Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam (Netherlands); Struth, Bernd [Deutsches Elektronen-Synchrotron, Hamburg (Germany)
2015-07-21
We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.
International Nuclear Information System (INIS)
Amann, Christian P.; Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd
2015-01-01
We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses
Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias
2015-07-21
We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.
Theory of semicollisional kinetic Alfven modes in sheared magnetic fields
International Nuclear Information System (INIS)
Hahm, T.S.; Chen, L.
1985-02-01
The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum
Normal force of magnetorheological fluids with foam metal under oscillatory shear modes
Energy Technology Data Exchange (ETDEWEB)
Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)
2016-04-01
The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.
Normal force of magnetorheological fluids with foam metal under oscillatory shear modes
International Nuclear Information System (INIS)
Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan
2016-01-01
The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.
Energetic ion excited long-lasting ``sword'' modes in tokamak plasmas with low magnetic shear
Wang, Xiaogang; Zhang, Ruibin; Deng, Wei; Liu, Yi
2013-10-01
An m/ n = 1 mode driven by trapped fast ions with a sword-shape envelope of long-lasting (for hundreds of milliseconds) magnetic perturbation signals, other than conventional fishbones, is studied in this paper. The mode is usually observed in low shear plasmas. Frequency and growth rate of the mode and its harmonics are calculated and in good agreements with observations. The radial mode structure is also obtained and compared with that of fishbones. It is found that due to fast ion driven the mode differs from magnetohydrodynamic long lived modes (LLMs) observed in MAST and NSTX. On the other hand, due to the feature of weak magnetic shear, the mode is also significantly different from fishbones. The nonlinear evolution of the mode and its comparison with fishbones are further investigated to analyze the effect of the mode on energetic particle transport and confinement.
Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash
Energy Technology Data Exchange (ETDEWEB)
Luo, Y.; Xiong, Y. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China)
2016-04-15
The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognized as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.
Shear flows induced by nonlinear evolution of double tearing modes
International Nuclear Information System (INIS)
Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.
2008-01-01
Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed
Development of an omni-directional shear horizontal mode magnetostrictive patch transducer
Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin
2018-04-01
The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.
Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks
Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.
2016-09-01
A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.
International Nuclear Information System (INIS)
Pichardo, Samuel; Hynynen, Kullervo
2007-01-01
Shear mode transmission through the skull has been previously proposed as a new trans-skull propagation technique for noninvasive therapeutic ultrasound (Clement 2004 J. Acoust. Soc. Am. 115 1356-64). The main advantage of choosing shear over longitudinal mode resides on the fact that there is less wavefront distortion with the former. In the present study, the regions of the brain suitable for shear-mode transmission were established for a simple focused ultrasound device. The device consists of a spherically curved transducer that has a focal length of 10 cm, an aperture between 30 0 and 60 0 and operates at 0.74 MHz. The regions suitable for shear-mode transmission were determined by the shear wave acoustic windows that matched the shape of the device acoustic field. The acoustic windows were calculated using segmentation and triangulation of outer and inner faces of skull from 3D-MRI head datasets. Nine heads of healthy adults were analyzed. The surface considered for the calculations was the head region found above the supra-orbital margin. For every inspected point in the brain volume, the axis of the device was determined by the vector between this inspection point and a point located in the center of the brain. Numerical predictions of the acoustic field, where shear-mode conversion through the skull was considered, were obtained and compared to the case of water-only conditions. The brain tissue that is close to the skull showed suitable acoustic windows for shear waves. The central region of the brain seems to be unreachable using shear-mode. Analysis of the acoustic fields showed a proportional relation between the acoustic window for shear mode and the effective degree of focusing. However, this relation showed significant differences among specimens. In general, highly focused fields were obtained when the acoustic window for shear waves (A SW ) intersected more than 67% of the entering acoustic window (A TX ) of the device. The average depth from the
Stability analysis of internal ideal modes in low-shear tokamaks
International Nuclear Information System (INIS)
Wahlberg, C.; Graves, J. P.
2007-01-01
The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q 1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region
Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas
DEFF Research Database (Denmark)
Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul
2005-01-01
The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...
International Nuclear Information System (INIS)
Burrell, K.H.; Osborne, T.H.; Groebner, R.J.; Rettig, C.L.
1993-01-01
VH-mode plasma exhibit energy confinement times up to 2.4 times the DIII-D/JET H-mode scaling relation and up to 3.9 times the value given by ITER89-P L-mode scaling. If this confinement improvement can be exploited in reactor plasmas, smaller prototype reactors with significantly lower unit cost can be produced. Accordingly, understanding and optimizing the confinement improvement is of significant interest. One of the possible explanations for this bulk confinement improvement is stabilization of turbulence by shear in the radial electric field, similar to the present explanation for the confinement improvement at the extreme plasma edge at the L to H transition. Preliminary measurements have shown that the region of the plasma where the electric field gradient is steepest broadens when the plasma goes from H-mode to VH-mode. More recent measurements have confirmed this broadening and have shown that the change in the electric field gradient occurs prior to the change in the thermal transport. In addition, transport analysis shows that the electric field shear increases in the same region between magnetic flux coordinate p=0.6 and 0.9 where the local thermal transport decreases. Furthermore, far infra-red (FIR) scattering measurements have detected density fluctuations in the region around p=0.8 which could be responsible for enhanced transport and which disappear at the time that the electric shear increases. These fluctuations appear as bursts of density fluctuations in the 0.5 to 1.5 MHz range. The time between bursts increases as the electric field shear increases. Once these bursts disappear, the major change in confinement takes place in most discharges. When isolated bursts occur, the heat and angular momentum pulse connected with the burst are detectable on the plasma profile diagnostics. (author) 13 refs., 4 figs
Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness
International Nuclear Information System (INIS)
Pozrikidis, C.
1994-01-01
Shear flow over a plane wall that contains an axisymmetric depression or pore is studied using a new boundary integral method which is suitable for computing three-dimensional Stokes flow within axisymmetric domains. Numerical results are presented for cavities in the shape of a section of a sphere or a circular cylinder of finite length, and for a family of pores or orifices with finite thickness. The results illustrate the distribution of shear stresses over the plane wall and inside the cavities or pores. It is found that in most cases, the distribution of shear stresses over the plane wall, around the depressions, is well approximated with that for flow over an orifice of infinitesimal thickness for which an exact solution is available. The kinematic structure of the flow is discussed with reference to eddy formation and three-dimensional flow reversal. It is shown that the thickness of a circular orifice or depth of a pore play an important role in determining the kinematical structure of the flow underneath the orifice in the lower half-space
Shear-mode Crack Initiation Behavior in the Martensitic and Bainitic Microstructures
Directory of Open Access Journals (Sweden)
Wada Kentaro
2018-01-01
Full Text Available Fully reversed torsional fatigue tests were conducted to elucidate the behaviour of shear-mode crack initiation and propagation in one martensitic and two bainitic steels. The relationship between the crack initiation site and microstructure was investigated by means of an electron backscatter diffraction (EBSD technique. From the S-N diagram, two notable results were obtained: (i the shear-mode crack was initiated on the prior austenitic grain boundary in martensitic steel, while in bainitic steels, the crack was initiated along the {110} plane; one of the slip planes of bcc metals, and (ii the torsional fatigue limit of lower bainitic steel with finer grains was 60 MPa higher than that of upper bainitic steel with coarser grains even though the hardnesses were nearly equivalent. The mechanism determining the torsional fatigue strength in these steels is discussed from the viewpoint of microstructure morphology.
Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress
Thijssen, D.H.J.; Dawson, E.A.; Munckhof, I.C. van den; Tinken, T.M.; Drijver, E. den; Hopkins, N.; Cable, N.T.; Green, D.J.
2011-01-01
Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an
Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows
International Nuclear Information System (INIS)
Artun, M.; Tang, W.M.
1992-01-01
The linearized gyrokinetic equation governing electrostatic microinstabilities in the presence of sheared equilibrium flow in both the z and y directions has been systematically derived for a sheared slab geometry, where in the large aspect ratio limit z and y directions correspond to the toroidal and poloidal directions respectively. In the familiar long perpendicular wavelength regime (κ perpendicular ρi > 1), the analysis leads to a comprehensive kinetic differential eigenmode equation which is solved numerically. The numerical results have been successfully cross-checked against analytic estimates in the fluid limit. For typical conditions, the Ion Temperature Gradient (ηi) modes are found to be stabilized for y-direction flows with a velocity shear scale comparable to that of the ion temperature gradient and velocities of a few percent of the sound speed. Sheared flows in the z-direction taken along are usually destabilizing, with the effect being independent of the sign of the flow. However, when both types are simultaneously considered, it is found that in the presence of shared z-direction flow, sheared y-direction flow can be either stabilizing or destabilizing depending on the relative sign of these flows. However, for sufficiently large values of υ' y the mode is completely stabilized regardless of the sign of υ' z υ' y . The importance of a proper kinetic treatment of this problem is supported by comparisons with fluid estimates. In particular, when such effects are favorable, significantly smaller values of sheared y-direction flow are required for stability than fluid estimates would indicate
Structure of parallel-velocity-shear-driven mode in toroidal plasmas
International Nuclear Information System (INIS)
Dong, J.Q.; Xu, W.B.; Zhang, Y.Z.; Horton, W.
1998-01-01
It is shown that the Fourier-ballooning representation is appropriate for the study of short-wavelength drift-like perturbation in toroidal plasmas with a parallel velocity shear (PVS). The radial structure of the mode driven by a PVS is investigated in a torus. The Reynolds stress created by PVS turbulence, and proposed as one of the sources for a sheared poloidal plasma rotation, is analyzed. It is demonstrated that a finite ion temperature may strongly enhance the Reynolds stress creation ability from PVS-driven turbulence. The correlation of this observation with the requirement that ion heating power be higher than a threshold value for the formation of an internal transport barrier is discussed. copyright 1998 American Institute of Physics
Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
International Nuclear Information System (INIS)
Seena, Abu; Sung, Hyung Jin
2011-01-01
Highlights: ► DMD modes were extracted from two cavity flow data set at Re D = 12,000 and 3000. ► At Re D = 3000, frequencies of boundary layer and shear layer structures coincides. ► Boundary layer structures exceed in size with shear layer structures. ► At Re D = 12,000, structure showed coherence leading to self-sustained oscillations. ► Hydrodynamic resonance occurs if coherence exists in wavenumber and frequency. - Abstract: Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (Re D = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/θ) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.
International Nuclear Information System (INIS)
Hellmann, J.R.; Chou, Y.S.
1995-01-01
The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system
Nonlinear Simulations of Trapped Electron Mode Turbulence in Low Magnetic Shear Stellarators
Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Hegna, C. C.
2017-10-01
Optimized stellarators, like the Helically Symmetric eXperiment (HSX), often operate with small global magnetic shear to avoid low-order rational surfaces and magnetic islands. Nonlinear, flux-tube gyrokinetic simulations of density-gradient-driven Trapped Electron Mode (TEM) turbulence in HSX shows two distinct spectral fluctuation regions: long-wavelength slab-like TEMs localized by global magnetic shear that extend along field lines and short-wavelength TEMs localized by local magnetic shear to a single helical bad curvature region. The slab-like TEMs require computational domains significantly larger than one poloidal turn and are computationally expensive, making turbulent optimization studies challenging. A computationally more efficient, zero-average-magnetic-shear approximation is shown to sufficiently describe the relevant nonlinear physics and replicate finite-shear computations, and can be exploited in quasilinear models based on linear gyrokinetics as a feasible optimization tool. TEM quasilinear heat fluxes are computed with the zero-shear approximation and compared to experimentally-relevant nonlinear gyrokinetic TEM heat fluxes for HSX. Research supported by U.S. DoE Grants DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291.
Tang, Zheng
2018-05-15
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Tang, Zheng; Mai, Paul Martin; Chang, Sung-Joon; Zahran, Hani
2018-01-01
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Webster, A.J.; Wilson, H.R.
2005-01-01
Tokamak discharges with internal transport barriers (ITBs) provide improved confinement, so it is important to understand their stability properties. The stability to an important class of modes with high wave-numbers perpendicular to the magnetic field, is usually studied with the standard ballooning transformation and eikonal approach. However, ITBs are often characterised by radial q profiles that have regions of negative or low magnetic shear and by radially sheared electric fields. Both these features affect the validity of the standard method. A new approach to calculating stability in these circumstances is developed and applied to ideal MHD ballooning modes and to micro-instabilities responsible for anomalous transport. (author)
Energy Technology Data Exchange (ETDEWEB)
Zolper, Thomas J.; He, Yifeng; Delferro, Massimiliano; Shiller, Paul; Doll, Gary; LotfizadehDehkordi, Babak; Ren, Ning; Lockwood, Frances; Marks, Tobin J.; Chung, Yip-Wah; Greco, Aaron; Erdemir, Ali; Wang, Qian
2016-08-11
This study investigates the rheological properties, elastohydrodynamic (EHD) film-forming capability, and friction coefficients of low molecular mass poly-alpha-olefin (PAO) base stocks with varying contents of high molecular mass olefin copolymers (OCPs) to assess their shear stability and their potential for energy-efficient lubrication. Several PAO-OCP mixtures were blended in order to examine the relationship between their additive content and tribological performance. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the molecular masses and structures, respectively. Density, viscosity, EHD film thickness, and friction were measured at 303 K, 348 K, and 398 K. Film thickness and friction were studied at entrainment speeds relevant to the boundary, mixed, and full-film lubrication regimes. The PAO-OCP mixtures underwent temporary shear-thinning resulting in decreases in film thickness and hydrodynamic friction. These results demonstrate that the shear characteristics of PAO-OCP mixtures can be tuned with the OCP content and provide insight into the effects of additives on EHD characteristics.
Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure
International Nuclear Information System (INIS)
Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.
1979-01-01
Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear
The effect of viscosity on the resistive tearing mode with the presence of shear flow
International Nuclear Information System (INIS)
Chen, X.L.; Morrison, P.J.
1990-01-01
The effect of small isotropic viscosity on the ''constant ψ'' tearing mode in the presence of shear flow, is analyzed by the boundary layer approach. It is found that the influence of viscosity depends upon the parameter (G'(0)/F'(0)), where G'(0) and F'(0) denote that shear and magnetic field shear at the magnetic null plane, respectively. When |(G'(0)/F'(0))| much-lt 1, the tearing mode growth rate is suppressed by the viscosity, but not completely stabilized. When |(G'(0)/F'(0))| ∼ in the order of (1) and the viscosity is comparable with the resistivity, the growth rate vanishes as ((1 - G'(0) 2 /F'(0) 2 ) 1/3 ), when G'(0) 2 → F'(0) 2 from below. In the case where (1 - G'(0) 2 /F'(0) 2 ) < 0 matching cannot be achieved. 8 refs
FEM Simulation of Incremental Shear
International Nuclear Information System (INIS)
Rosochowski, Andrzej; Olejnik, Lech
2007-01-01
A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant
Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian
2000-01-01
Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.
The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors
Reddy, SM; Jones, JP; Lewis, TJ
1998-01-01
It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the cr...
Energy Technology Data Exchange (ETDEWEB)
Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)
2016-03-11
We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.
International Nuclear Information System (INIS)
Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong
2016-01-01
We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.
Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2018-01-30
The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.
Lovejoy, Andrew Elwyn
1994-01-01
Composite materials are increasingly finding use in structures, such as aircraft components, and thus, an accurate method of predicting response is required. Even laminated structures that are considered thin can be significantly affected by transverse shear effects, and as a result, transverse shear should not be neglected. The free vibration response of generally-laminated, thick, skew, trapezoidal plates is investigated as there appears to be a lack of information in this ar...
Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography
Yoshizawa, K.; Ekström, G.
2008-12-01
The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.
Bailey, Claude Albert
This dissertation outlines the developmental procedure for a real-time food-borne pathogen detector that uses a thickness shear mode (TSM) quartz resonator. A theory is discussed which provides some understanding of the measured signals obtained from the TSM resonator-based Salmonella detector. The theory explains surface viscosity and mass effects, but has yet to be fully implemented for anomalous bacterial interactions. An equivalent circuit model for an immunochemical coating and its effect on the TSM resonator frequency is presented. The latter part of this dissertation describes immunological experiments with precoated piezoelectric quartz crystals. A highly purified immunological system was used to optimize the immobilization procedure. The use of biosensors is becoming a viable alternative to conventional analysis and promises to experience dramatic growth, especially after their true potential is realized and more cost-effective assays are developed. Concern about the safety of our food and water supplies will undoubtedly stimulate further research, and miniaturized biosensors will be developed for use by safety inspectors, and concerned personnel. A Salmonella detector has been demonstrated consisting of a TSM resonator with antibodies immobilized in a Langmuir Blodgett (LB) film on the surface [3]. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Antigen-antibody interactions change the acoustic resonant properties that are reflected in the sensor frequency response. The Salmonella detector operates in a liquid environment (Salmonella suspended in a phosphate buffered saline solution). The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media (buffer solutions, chicken exudate, and varying fat contents of milk) were studied as a function of
Thickness shear mode quartz crystal resonators with optimized elliptical electrodes
International Nuclear Information System (INIS)
Ma Ting-Feng; Feng Guan-Ping; Zhang Chao; Jiang Xiao-Ning
2011-01-01
Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.
2009-01-01
Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.
Plasticity Approach to Shear Design
DEFF Research Database (Denmark)
Hoang, Cao Linh; Nielsen, Mogens Peter
1998-01-01
The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....
Vibrations of laminated composite thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Shikanai, Genji; Baba, Iwato
1998-01-01
An exact solution is presented for solving free vibrations of laminated composite thick shells of revolution having meridionally varying curvature. Based on the thick lamination theory considering the shear deformation and rotary inertia, equations of motion and boundary conditions are obtained from the stationary conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated cross-ply shells. Frequencies and mode shapes of shells of revolution having elliptical and parabolical meridians are presented for both ends clamped, and the effects of shear deformation and rotary inertia are discussed by comparing the results from the present theory with those from the thin lamination theory. (author)
Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading
Directory of Open Access Journals (Sweden)
Tianhui Ma
2016-01-01
Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.
International Nuclear Information System (INIS)
Nishimura, A.; Nishijima, S.; Izumi, Y.
2008-01-01
It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation
Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders
Directory of Open Access Journals (Sweden)
Qi Cao
2015-01-01
Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.
Liu, J. B.; Johnson, D. D.
2009-04-01
Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.
Energy Technology Data Exchange (ETDEWEB)
J Squire, A Bhattacharjee [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-07-01
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).
International Nuclear Information System (INIS)
Baggio Aguiar, Flavio Henrique; Kanda Peres Barros, Gisele; Alves Nunes Leite Lima, Debora; Bovi Ambrosano, Glaucia Maria; Lovadino, Jose Roberto
2006-01-01
The aim of this in vitro study was to evaluate the effect of different polymerization modes on temperature rise in human dentin of different thicknesses, and to evaluate the relation between dentin thickness and temperature rise (TR). For this purpose, 60 specimens were assigned into 20 groups (n = 3): five polymerization modes (1-conventional; 2-soft-start; 3-high intensity; 4-ramp cure: progressive and high intensity; 5-high intensity with the tip of the light-curing unit at a distance of 1.3 cm for 10 s and the tip leaning on the sample) at four dentin thicknesses (0, 1, 2, 3 mm). During composite sample polymerization (2 mm), the temperature was measured by a digital laser thermometer (CMSS2000-SL/SKF). The statistical analyses were conducted by ANOVA (p = 0.05) and post-hoc Tukey's test. There were statistical differences of TR among polymerization modes and dentin thicknesses. The temperature rise was dependent on the polymerization mode and the dentin thickness: the thicker the dentin and the lower the polymerization mode energy, the lower the temperature rise
Refining enamel thickness measurements from B-mode ultrasound images.
Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin
2009-01-01
Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).
Axisymmetric vibrations of thick shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)
Compression and shear properties of elastomeric bearing using finite element analysis
Directory of Open Access Journals (Sweden)
2Faculty of Science and Technology, Chiang Mai Rajabhat University, Muang, Chiang Mai, 50300 Thailand.
2006-09-01
Full Text Available Standard size samples of four natural rubber compounds, varying the amount of carbon black from 10 to 70 phr, were characterised under uniaxial compression and simple shear tests in order to obtain the strain energy function constants. These constants were then used as hyperelastic material constants for the Windows-based finite element package (COSMOS/M version 1.75. The investigated bearings, made with those NR compounds, had the approximate area and thickness of 50x106 mm2 and 50 mm respectively. Each compound of bearing consisted of four different values of shape factor ranging from about 0.33 to 1.70, according to the number of reinforcing plates in the bearing. Three deformation modes of compression, shear and compression-shear were predicted. Good agreement was found between twelve compression model predictions and the corresponding experimental values of bearings, containing 10, 20 and 40 phr of carbon black and each of which consisted of four different layers of reinforcing metal plates (0, 1, 2 and 3 layers. On the other hand, deviation from the predicted valve was clearly seen in the 70 phr black bearing case. The percentage difference increased with respect to the increasing number of reinforcing plates or the rising shape factor. Therefore, the improved FEA model was supplemented with an imaginary elastic glue layer between the rubber block and metal plate as glue failure compensation. The optimum value of the elastic layers modulus is 8 MPa while the thickness of the layer depends on the total thickness or total volume of rubber block. This model can predict the 70 phr carbon black bearings, having shape factor ranging from 0.5 to 2.35 for 11 cases. The FEA prediction of shear behaviour agrees well with the experimental data for all four bearing compounds and there is no effect of shape factor on shear stress. Moreover, shear stress does not depend on the compressive force applied to like bearing before shear and the FEA results
Axisymmetric vibrations of thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Takahashi, Fumiaki.
1987-01-01
An exact method using power series expansions is presented for solving axisymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is applied to thick shells of revolution having their generating curves of ellipse, cycloid, parabola, catenary and hyperbola. The results by the present method are compared with those by the thin shell theory and the effects of rotatory inertia and shear deformation upon the natural frequencies and the mode shapes are clarified. (author)
Directory of Open Access Journals (Sweden)
M.A. Najafgholipour
Full Text Available Abstract Reinforced concrete (RC beam-column connections especially those without transverse reinforcement in joint region can exhibit brittle behavior when intensive damage is concentrated in the joint region during an earthquake event. Brittle behavior in the joint region can compromise the ductile design philosophy and the expected overall performance of structure when subjected to seismic loading. Considering the importance of joint shear failure influences on strength, ductility and stability of RC moment resisting frames, a finite element modeling which focuses on joint shear behavior is presented in this article. Nonlinear finite element analysis (FEA of RC beam-column connections is performed in order to investigate the joint shear failure mode in terms of joint shear capacity, deformations and cracking pattern. A 3D finite element model capable of appropriately modeling the concrete stress-strain behavior, tensile cracking and compressive damage of concrete and indirect modeling of steel-concrete bond is used. In order to define nonlinear behavior of concrete material, the concrete damage plasticity is applied to the numerical model as a distributed plasticity over the whole geometry. Finite element model is then verified against experimental results of two non-ductile beam-column connections (one exterior and one interior which are vulnerable to joint shear failure. The comparison between experimental and numerical results indicates that the FE model is able to simulate the performance of the beam-column connections and is able to capture the joint shear failure in RC beam-column connections.
Pane, Epita S; Palamara, Joseph E A; Messer, Harold H
2015-12-01
This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.
Manual B-mode versus automated radio-frequency carotid intima-media thickness measurements
Dogan, Soner; Plantinga, Yvonne; Dijk, Joke M.; van der Graaf, Yolanda; Grobbee, Diederick E.; Bots, Michiel L.; Algra, N. N.; Doevendans, P. A.; Eikelboom, C.; van der Graaf, Y.; Grobbee, E.; Kappelle, L. J.; Mali, W. P. Th M.; Moll, F. L.; Rutten, G. E. H. M.; Visseren, F. L. J.
2009-01-01
Carotid intima-media thickness (CIMT) serves as an indicator of atherosclerosis and cardiovascular risk. Manual measurements of B-mode ultrasound images are the most applied method. Automated measurements with radiofrequency (RF) ultrasound have been suggested as an alternative. The aim of this
International Nuclear Information System (INIS)
Liu, Mingtao; Li, Yongchi; Hu, Xiuzhang; Hu, Haibo
2014-01-01
The formation of an adiabatic shear band (ASB) experiences three stages: stable plastic flow, nucleation and a fluid-like stage. For different stages, the microstructures of the material undergo great changes. The mechanical behavior of the material in each stage has its own unique characteristics. To describe these characteristics, a multi-stage model for the shear band is proposed. For the stable plastic flow stage, a modified adiabatic J–C constitutive relationship is used. For the nucleation stage, the effects of work hardening and temperature softening are described by a power function of plastic strain. A Newtonian fluid model is used for the fluid-like stage. The formation of a shear band is an instability process. Various defects in the material are perturbation sources, which change the local yield stress. To describe the disturbances, a probability factor is introduced into the macroscopic constitutive relationship. The yield stress in the material is assumed to obey a Gaussian distribution. The multi-stage model combined with a probability factor is applied to simulate the rupture of thick-walled cylinder in 304 Stainless Steel (304SS). A close agreement is found between the simulation and experimental results, such as the failure mechanism, shear band spacing and propagating velocity of the shear band. By combining the experimental results with the simulation results, the importance of the nucleation stage is emphasized. (paper)
International Nuclear Information System (INIS)
Yang, Z T; Zeng, D P; He, M; Wang, H
2015-01-01
Bulk piezoelectric ceramics operating in thickness-stretch (TSt) modes have been widely used in acoustic-related devices. However, the fundamental TSt waves are always coupled with other modes, and the occurrence of these spurious modes in bulk piezoelectric ceramics affects its performance. To suppress the spurious modes, 1-3 piezoelectric composites are promising candidates. However, theoretical modeling of multiphase ceramic composite objects is very complex. In this study, a 1-3 piezoelectric composite sample and a bulk piezoelectric sample are fabricated. The electrical impedance of these two samples are compared. A simple analytical TSt vibration mode from the three dimensional equations of linear piezoelectricity is used to model the performance of 1-3 piezoelectric composites. The theoretical results agree well with the experimental results. (paper)
The effect of through-thickness compressive stress on mode II interlaminar fracture toughness
Catalanotti, G.; Furtado, C.; Scalici, T.; Pitarresi, G.; van der Meer, F.P.; Camanho, PP
2017-01-01
The effect of through-thickness compressive stress on mode II interlaminar fracture toughness is investigated experimentally and replicated numerically. The modified Transverse Crack Tensile specimen recently proposed by the authors is used, together with an experimental device designed to apply
Excitation of the shear horizontal mode in a monolayer by inelastic helium atom scattering
DEFF Research Database (Denmark)
Bruch, L. W.; Hansen, Flemming Yssing
2005-01-01
Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave,packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths....... The diffraction and inelastic processes arise from a strong coupling of the incident atom to the target and the calculated results show large departures from expectations based on analogies to inelastic thermal neutron scattering....
Velocity shear generated Alfven waves in electron-positron plasmas
International Nuclear Information System (INIS)
Rogava, A.D.; Berezhiani, V.I.; Mahajan, S.M.
1996-01-01
Linear MHD modes in cold, nonrelativistic electron-positron plasma shear flow are considered. The general set of differential equations, describing the evolution of perturbations in the framework of the nonmodal approach is derived. It is found, that under certain circumstances, the compressional and shear Alfven perturbations may exhibit large transient growth fuelled by the mean kinetic energy of the shear flow. The velocity shear also induces mode coupling allowing the exchange of energy as well as the possibility of a strong mutual transformation of these modes into each other. The compressional Alfven mode may extract the energy of the mean flow and transfer it to the shear Alfven mode via this coupling. The relevance of these new physical effects to provide a better understanding of the laboratory e + e - plasma is emphasized. It is speculated that the shear-induced effects in the electron-positron plasmas could also help solve some astrophysical puzzles (e.g., the generation of pulsar radio emission). Since most astrophysical plasma are relativistic, it is shown that the major results of the study remain valid for weakly sheared relativistic plasmas. (author). 21 refs, 4 figs
Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E
2003-04-01
There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.
Ghorbanirenani, Iman
This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program
Air-coupled ultrasonic through-transmission thickness measurements of steel plates.
Waag, Grunde; Hoff, Lars; Norli, Petter
2015-02-01
Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of Equilibrium Perpendicular Shear Flow on Peeling-ballooning Instabilities
Xi, P. W.; Xu, X. Q.
2011-10-01
The influence of perpendicular ExB shear flow on peeling-ballooning instabilities is investigated with BOUT++ code. In our simulation, a set of reduced MHD equations are solved for a very unstable equilibrium and a marginal unstable equilibrium in shifted-circular tokamak geometry. For ideal MHD cases without diamagnetic terms and resistivity, we find that flow shear shows dramatic stabilizing effect on peeling-ballooning modes and the stabilizing degree increases with mode number. When the flow shear is large enough, we find the curvature of growth rate verse mode number has the same shape like that for the case with only diamagnetic term, and this implies that diamagnetic term and the shear flow have the same mechanism acting on peeling-ballooning instabilities. The role of Kelvin-Helmholtz term is also investigated and we find it is destabilizing and the effect depends on both flow shear and mode number. For cases with both diamagnetic term and the applied shear flow, modes with intermediate mode number are strongest stabilized while high n and low n mode keep unstable. Based on these results, an ELM trigger sketch is proposed. Performed for USDoE by LLNL Contract DE-AC52-07NA27344.
A shear-mode magnetoelectric heterostructure for harvesting external magnetic field energy
He, Wei; Zhang, Jitao; Lu, Yueran; Yang, Aichao; Qu, Chiwen; Yuan, Shuai
2017-03-01
In this paper, a magnetoelectric (ME) energy harvester is presented for scavenging external magnetic field energy. The proposed heterostructure consists of a Terfenol-D plate, a piezoelectric PZT5H plate, a NdFeB magnet, and two concentrators. The external magnetic field is concentrated to the Terfenol-D plate and the PZT5H plate working in shear-mode, which can potentially increase the magnetoelectric response. Experiments have been performed to verify the feasibility of the harvester. Under the magnetic field of 0.6 Oe, the device produces a RMS voltage of 0.53 V at the resonant frequency of 32.6 kHz. The corresponding output power reaches 44.96 μW across a 3.1 kΩ matching resistor.
Xu, Yanlong
2015-08-01
The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.
International Nuclear Information System (INIS)
Sarkar, C; Hirani, H
2013-01-01
The torque characteristics of magnetorheological brakes, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnetic casing, are controlled by regulating the yield stress of the MR fluid. An increase in yield stress increases the braking torque, which means that the higher the yield strength of the MR fluid, the better the performance of the MR brake will be. In the present research an application of compressive force on MR fluid has been proposed to increase the torque capacity of MR brakes. The mathematical expressions to estimate the torque values for MR brake, operating under compression plus shear mode accounting Herschel–Bulkley shear thinning model, have been detailed. The required compressive force on MR fluid of the proposed brake has been applied using an electromagnetic actuator. The development of a single-plate MR disk brake and an experimental test rig are described. Experiments have been performed to illustrate braking torque under different control currents (0.0–2.0 A). The torque results have been plotted and compared with theoretical study. Experimental results as well as theoretical calculations indicate that the braking torque of the proposed MR brake is higher than that of the MR brake operating only under shear. (paper)
Taha, Doaa; Spintzyk, Sebastian; Schille, Christine; Sabet, Ahmed; Wahsh, Marwa; Salah, Tarek; Geis-Gerstorfer, Jürgen
2017-12-11
The purpose of this in vitro study was to assess the effect of varying the margin designs and the occlusal thicknesses on the fracture resistance and mode of failures of endodontically treated teeth restored with polymer infiltrated ceramic endocrown restorations. Root canal treated mandibular molars were divided into four groups (n=8) and were prepared to receive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) fabricated polymer infiltrated ceramic endocrowns (ENAMIC blocks). Group B2 represents teeth prepared with a butt joint design receiving endocrowns with 2mm occlusal thickness and the same for group B3.5 but with 3.5mm occlusal thickness. Group S2 represents teeth prepared with 1mm shoulder finish line receiving endocrowns with 2mm occlusal thickness and the same for group S3.5 but with 3.5mm occlusal thickness. After cementation and thermal aging, fracture resistance test was performed and failure modes were observed. Group S3.5 showed the highest mean fracture load value (1.27±0.31kN). Endocrowns with shoulder finish line had significantly higher mean fracture resistance values than endocrowns with butt margin (p<0.05). However, the results were not statistically significant regarding the restoration thickness. Evaluation of the fracture modes revealed no statistically significant difference between the modes of failure of tested groups. For the restoration of endodontically treated teeth, adding a short axial wall and shoulder finish line can increase the fracture resistance. However, further investigations, especially the fatigue behavior, are needed to ensure this effect applies with small increases of restoration thickness. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates
Becnel, Andrew C.
This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter
2018-01-01
Objectives The aim of this in vitro study was to evaluate the bond strength of 2 universal adhesives used in different application modes to bleached enamel. Materials and Methods Extracted 160 sound human incisors were used for the study. Teeth were divided into 4 treatment groups: No treatment, 35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide. After bleaching treatments, groups were divided into subgroups according to the adhesive systems used and application modes (n = 10): 1) Single Bond Universal, etch and rinse mode; 2) Single Bond Universal, self-etch mode; 3) Gluma Universal, etch and rinse mode; 4) Gluma Universal, self-etch mode. After adhesive procedures nanohybrid composite resin cylinders were bonded to the enamel surfaces. All specimens were subjected to shear bond strength (SBS) test after thermocycling. Data were analyzed using a 3-way analysis of variance (ANOVA) and Tukey post hoc test. Results No significant difference were found among bleaching groups (35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide, and no treatment groups) in the mean SBS values. There was also no difference in SBS values between Single Bond Universal and Gluma Universal at same application modes, whereas self-etch mode showed significantly lower SBS values than etch and rinse mode (p adhesives was enhanced with the etch and rinse mode application to bleached enamel and non-bleached enamel. PMID:29765900
Panel and planar experimental shear behavior of wood panels ...
African Journals Online (AJOL)
Panel shear strength along the thickness and planar shear along the length of wood panels laminated softwood oriented OSB 10 mm thick, conditioned at different moisture contents (anhydrous medium, ambient temperature and humid medium) was measured on standardized test specimens, cut in half lengthwise panel ...
Vibrational modes and strain in GaN/AlN quantum dot stacks: dependence on spacer thickness
Energy Technology Data Exchange (ETDEWEB)
Fresneda, J.; Cros, A.; Llorens, J.M.; Garcia-Cristobal, A.; Cantarero, A. [Institut de Ciencia del Materials, Universitat de Valencia, 46071 Valencia (Spain); Amstatt, B.; Bellet-Amalric, E.; Daudin, B. [CEA-CNRS Group, Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)
2007-06-15
We have investigated the influence of spacer thickness on the vibrational and strain characteristics of GaN/AlN quantum dot multilayers (QD). The Raman shift corresponding to the E{sub 2h} vibrational mode related to the QDs has been analyzed for AlN thicknesses ranging from 4.4 nm to 13 nm, while the amount of GaN deposited in each layer remained constant from sample to sample. It is shown that there is a rapid blue shift of the GaN vibrational mode with spacer thickness when its value is smaller than 7 nm while it remains almost constant for thicker spacers. A rapid increase of the Raman line-width in the thicker samples is also observed. The experimental behavior is discussed in comparison with the results of a theoretical model for the strain in the QDs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Alfven eigenmodes in shear reversed plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Pekker, M.S.; Sharapov, S.E.; Hawkes, N.C.; Borba, D.N.; Pinches, S.D.
2003-01-01
Experiments on JT-60U and JET have shown that plasma configurations with shear reversal are prone to the excitation of unusual Alfven Eigenmodes by energetic particles. These modes emerge outside the TAE frequency gap, where one might expect them to be strongly damped. The modes often appear in bunches and they exhibit a quasi-periodic pattern of predominantly upward frequency sweeping (Alfven Cascades) as the safety factor q changes in time. This work presents a theory that explains the key features of the observed unusual modes including their connection to TAE's as well as the modifications of TAE's themselves near the shear reversal point. The developed theory has been incorporated into a reduced numerical model and verified with full geometry codes. JET experimental data on Alfven spectroscopy have been simulated to infer the mode numbers and the evolution of q min in the discharge. This analysis confirms the values of q that characterize the internal transport barrier triggering in reversed shear plasmas. (author)
Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks
International Nuclear Information System (INIS)
Giannadakis, K; Varna, J
2012-01-01
The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.
Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters
Directory of Open Access Journals (Sweden)
Zinan Zhao
2016-01-01
Full Text Available This paper presents the thickness-extensional vibration of a rectangular piezoelectric thin film bulk acoustic wave filter with two pairs of electrodes symmetrically deposited on the center of the zinc oxide film. The two-dimensional scalar differential equations which were first derived to describe in-plane vibration distribution by Tiersten and Stevens are employed. The Ritz method with trigonometric functions as basis functions is used based on a variational formulation developed in our previous paper. Free vibration resonant frequencies and corresponding modes are obtained. The modes may separate into symmetric and antisymmetric ones for such a structurally symmetric filter. Trapped modes with vibrations mainly under the driving electrodes are exhibited. The six corner-type regions of the filter neglected by Tiersten and Stevens for an approximation are taken into account in our analysis. Results show that their approximation can lead to an inaccuracy on the order of dozens of ppm for the fundamental mode, which is quite significant in filter operation and application.
Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field
DEFF Research Database (Denmark)
Chakrabarti, N.; Juul Rasmussen, J.
1999-01-01
The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....
International Nuclear Information System (INIS)
Kim, Eun-jin; Diamond, P.H.
2003-01-01
The dynamics of and an interplay among structures (mean shear flows, zonal flows, and generalized Kelvin-Helmholtz modes) are studied in drift wave turbulence. Mean shear flows are found to inhibit the nonlinear generation of zonal flows by weakening the coherent modulation response of the drift wave spectrum. Based on this result, a minimal model for the L→H (low- to high-confinement) transition is proposed, which involves the amplitude of drift waves, zonal flows, and the density gradient. A transition to quiescent H-mode sets in as the profile becomes sufficiently steep to completely damp out drift waves, following an oscillatory transition phase where zonal flows regulate drift wave turbulence. The different roles of mean flows and zonal flows are elucidated. Finally, the effect of poloidally nonaxisymmetric structures (generalized Kelvin-Helmholtz mode) on anomalous transport is investigated, especially in reference to damping of collisionless zonal flows. Results indicate that nonlinear excitation of this structure can be potentially important in enhancing anomalous transport as well as in damping zonal flows
Elastic stability of thick auxetic plates
International Nuclear Information System (INIS)
Lim, Teik-Cheng
2014-01-01
Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)
Vriend, J. J. W.; de Groot, E.; Kastelein, J. J. P.; Mulder, B. J. M.
2004-01-01
Aim. Cardiovascular and cerebrovascular morbidity and mortality in adult post-coarctectomy patients is increased even after successful surgical repair of the aorta. B-mode ultrasound intima-media thickness (IMT), a validated marker for atherosclerosis and vascular disease risk, was used to measure
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
Katili, Irwan
1993-06-01
A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.
Introduction to the viewpoint set on shear bands
International Nuclear Information System (INIS)
Hutchinson, J.W.
1984-01-01
Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature
Impedance method for measuring shear elasticity of liquids
Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.
2017-11-01
Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.
Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy
2014-05-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the
Sheared flow layer formation in tokamak plasmas with reversed magnetic shear
International Nuclear Information System (INIS)
Dong, J.Q.; Long, Y.X.; Mou, Z.Z.; Zhang, J.H.; Li, J.Q.
2005-01-01
Sheared flow layer (SFL) formation due to magnetic energy release through tearing-reconnections in tokamak plasmas is investigated. The characteristics of the SFLs created in the development of double tearing mode, mediated by electron viscosity in configurations with non-monotonic safety factor q profiles and, therefore, two rational flux surfaces of same q value, are analyzed in detail as an example. Quasi-linear simulations demonstrate that the sheared flows induced by the mode have desirable characteristics (lying at the boundaries of the magnetic islands), and sufficient levels required for internal transport barrier (ITB) formation. A possible correlation of the SFLs with experimental observations, that double transport barrier structures are preferentially formed in proximity of the two rational surfaces, is also proffered. (author)
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Directory of Open Access Journals (Sweden)
Mohammad Zamani Nejad
2014-01-01
Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.
Energy Technology Data Exchange (ETDEWEB)
Miriyev, Aslan, E-mail: aslan.miriyev@columbia.edu [Department of Mechanical Engineering, Columbia University in the City of New York, 500 W. 120th St., Mudd 220, New York, NY 10027 (United States); Levy, Asaf; Kalabukhov, Sergey; Frage, Nachum [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 8410501 (Israel)
2016-09-05
Microstructural evolution of the Al/Ti bi-metal interface during heat treatment in a spark plasma sintering (SPS) apparatus was investigated under various conditions for the first time. A mechanism of interfacial layer growth was suggested based on the results of SEM, TEM and X-ray diffraction analysis. A continuous TiAl{sub 3} intermetallic layer was formed at the Al/Ti interface even after a processing time as short as about a minute. The TiAl{sub 3} layer grew mainly into the Ti part, while only a few individual grains grew into the Al part. Evolution of the interlayer was determined by Al diffusion through the (TiAl{sub 3}/TiAl{sub 3}) grain boundary. The activation energy of the process was 140 kJ/mol. The shear strength of the interface in the Al/Ti bi-metal was determined after various heat treatments. The shear strength of the bi-metal was limited by the properties of aluminum, with no effect of interlayer thickness or current mode and pulse pattern of the SPS treatment being detected. - Highlights: • Spark plasma sintering apparatus was used for heat treatment of Al/Ti bi-metals. • Microstructural evolution of Al/Ti interface during SPS treatment was investigated. • A continuous TiAl{sub 3} intermetallic layer was formed at the Al/Ti interface. • The bi-metal shear strength was limited by the properties of pure aluminum. • No effect of TiAl{sub 3} thickness or SPS current mode and pulse pattern was detected.
Gyrokinetic global analysis of ion temperature gradient driven mode in reversed shear tokamaks
International Nuclear Information System (INIS)
Idomura, Y.; Tokuda, S.; Kishimoto, Y.
2003-01-01
A new toroidal gyrokinetic particle code has been developed to study the ion temperature gradient driven (ITG) turbulence in reactor relevant tokamak parameters. We use a new method based on a canonical Maxwellian distribution F CM (P φ , ε, μ), which is defined by three constants of motion in the axisymmetric toroidal system, the canonical angular momentum P φ , the energy ε, and the magnetic moment μ. A quasi-ballooning representation enables linear and nonlinear high-m,n global calculations with a good numerical convergence. Conservation properties are improved by using the optimized loading method. From comprehensive linear global analyses over a wide range of an unstable toroidal mode number spectrum (n=0∼100) in large tokamak parameters (a/ρ ti =320∼460), properties of the ITG modes in reversed shear tokamaks are discussed. In the nonlinear simulation, it is found that a new method based on F CM can simulate a zonal flow damping correctly, and spurious zonal flow oscillations, which are observed in a conventional method based on a local Maxwellian distribution F LM (ψ, ε, μ), do not appear in the nonlinear regime. (author)
Nonlinear interaction of Rayleigh--Taylor and shear instabilities
International Nuclear Information System (INIS)
Finn, J.M.
1993-01-01
Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed
Direct Shear Behavior of Fiber Reinforced Concrete Elements
Directory of Open Access Journals (Sweden)
Hussein Al-Quraishi
2018-01-01
Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory
Shear-coupled grain-boundary migration dependence on normal strain/stress
Combe, N.; Mompiou, F.; Legros, M.
2017-08-01
In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.
On transformation shear of precipitated zirconia particles
International Nuclear Information System (INIS)
Zhang, J.M.; Lam, K.Y.
1993-01-01
A model is proposed to investigate the transformation shear of the precipitated zirconia particles which undergo a stress-induced lattice transformation from tetragonal to monoclinic symmetry. Kinematically admissible twinning planes and the corresponding twinning elements are determined according to the continuum theory of dispacive phase transformation. It is postulated that only one twinning mode prevails in each transformed particle and that the minimization of elastic strain energy change dictates the morphology of the transformed variants. The transformation shear is determined by the twinning mode and the volume fraction of the corresponding variant. Numerical calculations show that each of the six kinematically admissible twinning modes may be kinematically favorable and therefore operate in constrained particle. The actual transformation shear in a transformed particle is shown to be dependent on the transformation stress, on the particle shape as well as on the lattice orientation relative to the principal axes of the ellipsoidal particle
The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas
He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.
2016-05-01
The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q = 1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.
International Nuclear Information System (INIS)
Das, M.L.
1975-01-01
A shear deformation theory is derived using a variational technique similar to Reissner-Naghdi linear theory neglecting the transverse normal stress. This theory is used to analyze shells of revolution subjected to arbitrary load distribution. The shell material is assumed to have two-dimensional elastic isotropy in directions tangent to its surface. Young's modulus may vary through the thickness and in the meridional direction. Poisson's ratio is assumed to be constant. Arbitrary temperature can be applied to the shell. Change of Young's modulus in the circumferential direction due to high temperature variation is neglected in the theory. All pertinent variables are expanded in Fourier series in the circumferential direction to get 5 ordinary differential equations, decoupled in individual Fourier components of independent displacements. Finite difference numerical technique is used to solve these differential equations. For handling these numerical quantities in orderly fashion, matrix algebra is utilized. Budiansky and Radkowski have applied a similar technique to solve the equations based on the classical shell theory of Sanders. Two independent computer programs are developed, one based on the shear deformation theory derived here and the other on the work of Budiansky and Radkowski. Two different circular cylindrical shells are utilized to explore the subject of this paper. They have the same geometric dimensions but different boundary conditions and one is fixed at both ends while the other has one end free
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
The instability criterion for ideal and resistive MHD modes
International Nuclear Information System (INIS)
Li Ding
2002-01-01
The instability criterions for ideal helical perturbation and resistive kink/tearing modes are derived for arbitrary q profile. It is found that the q=1 mode can be unstable only within the q=1 surface in positive shear plasma. The instability region is enlarged as q 0 decreases and/or the current density is flatted. The instability can be completely suppressed in the reverse shear plasma for peaked, and flatted current profile. The q>1 modes are stable in the plasma core and marginal stable within the rational surface in the positive shear plasma. They become more stable in the plasma core and still marginal stable around the rational surface in the reversed shear plasma. It is shown that in the positive shear plasma, the q=1, 5/4, 4/3, 3/2 and 2/1 modes are in turn destabilized and becomes dominant unstable mode as q 0 increases for fixed q a . In the reversed shear plasma, all the q=1 and q>1 modes can be stable when q0 1 modes in turn becomes unstable as q 0 (>1) increases. At first, the inner branch is stable while the outer branch weakly unstable. Then, the both branches can become strongly unstable as q0 increases. (author)
Local particle flux reversal under strongly sheared flow
International Nuclear Information System (INIS)
Terry, P.W.; Newman, D.E.; Ware, A.S.
2003-01-01
The advection of electron density by turbulent ExB flow with linearly varying mean yields a particle flux that can reverse sign at certain locations along the direction of magnetic shear. The effect, calculated for strong flow shear, resides in the density-potential cross phase. It is produced by the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively isolated. The reversed flux becomes negligible if the electron density response is governed by electron scales while the eigenmode is governed by ion scales. The relationship of these results to experimentally observe flux reversals is discussed
Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan
2017-04-01
Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.
Role of E x B Shear and Magnetic Shear in the Formation of Transport Barriers in DIII-D
International Nuclear Information System (INIS)
Burrell, K.H.
2005-01-01
Development of the E x B shear stabilization model to explain the formation of transport barriers in magnetic confinement devices is a major achievement of fusion research. This concept has the universality needed to explain the H-mode edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines; the broader edge transport barrier seen in VH-mode plasmas; and the core transport barriers formed in tokamaks with low or negative magnetic shear. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to reduce transport when an additional source of free energy is applied to it. The transport decrease associated with E x B velocity shear is also of great practical benefit to fusion research. The fundamental physics involved in transport reduction is the effect of E x B shear on the growth, radial extent, and phase correlation of turbulent eddies in the plasma. The same basic transport reduction process can be operational in various portions of the plasma because there are a number of ways to change the radial electric field E r . An important theme in this area is the synergistic effect of E x B velocity shear and magnetic shear. Although the E x B velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of E x B velocity shear and facilitate turbulence stabilization. The experimental results on DIII-D and other devices are generally consistent with the basic theoretical models
Sheared Electroconvective Instability
Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon
2012-11-01
Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.
Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio
2010-11-01
eigenvalue problem for the physically relevant vanishing Neumann boundary conditions in linear-shear channel flow. We show that the life of the corresponding modes at large Pe for this case is shorter than the ones arising from shear free zones in the fluid's interior. A WKBJ study of the latter modes provides a longer intermediate time evolution. This part of the analysis is technical, as the corresponding spectrum is dominated by asymptotically coalescing turning points in the limit of large Pe numbers. When large scale initial data components are present, the transient regime of the WKBJ (anomalous) modes evolves into one governed by Taylor dispersion. This is studied by a regular perturbation expansion of the spectrum in the small wavenumber regimes.
Instabilities and vortex dynamics in shear flow of magnetized plasmas
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.
1990-03-01
Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab
Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams
Directory of Open Access Journals (Sweden)
Alhamad Siyam
2017-01-01
Full Text Available This study investigates the shear behavior of deep concrete beams reinforced with basalt fiber reinforced polymer (BFRP bars for flexure without web reinforcements. The experimental testing performed herein consisted of a total of 4 short beams, three of which were reinforced with BFRP and one beam was reinforced with steel bars. The primary test variable was the shear-span-to-effective-depth ratio (a/d and its influence on the beams’ mid-span deflections, shear capacity, load-deformation relationships and the failure modes.
Shear flows at the tokamak edge and their interaction with edge-localized modes
International Nuclear Information System (INIS)
Aydemir, A. Y.
2007-01-01
Shear flows in the scrape-off layer (SOL) and the edge pedestal region of tokamaks are shown to arise naturally out of transport processes in a magnetohydrodynamic model. In quasi-steady-state conditions, collisional resistivity coupled with a simple bootstrap current model necessarily leads to poloidal and toroidal flows, mainly localized to the edge and SOL. The role of these flows in the grad-B drift direction dependence of the power threshold for the L (low) to H (high) transition, and their effect on core rotation, are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in agreement with observations in Alcator C-Mod [Phys. Plasmas 12, 056111 (2005)]. The effects of these self-consistent flows on linear peeling/ballooning modes and their nonlinear consequences are also examined
Comparative face-shear piezoelectric properties of soft and hard PZT ceramics
Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin
2015-12-01
The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.
Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas
International Nuclear Information System (INIS)
Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.
2001-01-01
The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Yuwaraj Marotrao Ghugal
Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.
Mixed-mode fracture of ceramics
Energy Technology Data Exchange (ETDEWEB)
Petrovic, J.J.
1985-01-01
The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.
Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.
Directory of Open Access Journals (Sweden)
Delin Tang
Full Text Available Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.
Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.
Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang
2014-01-01
Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.
International Nuclear Information System (INIS)
Gaur, Gurudatt; Das, Amita
2012-01-01
The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.
International Nuclear Information System (INIS)
Burrell, K.H.
1996-11-01
One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization
On the linear stability of sheared and magnetized jets without current sheets - relativistic case
Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.
2018-03-01
In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.
Nonlinear tearing mode and vortex chains
International Nuclear Information System (INIS)
Jovanovic, D.; Vranjes, J.
1996-01-01
We study the nonlinear stage of a tearing mode, whose island width exceeds the tearing layer thickness, and the wavelength is of the order of collisionless skin depth. A coherent solution is found in the form of a moving vortex chain. It is the result of a self-organization process, which adjusts the profile of the sheared poloidal magnetic field and excites a localized perpendicular sheared plasma flow, consisting of three counterstreaming jets. A numerical solution shows a twin chain of plasma vortices, coupled with a single chain of magnetic islands, whose width is of the order of collisionless skin depth. Adiabatic evolution of the vortex chain in the presence of small viscosity reveals its finite lifetime. The chain destruction may occur either directly, or through a sequence of bifurcations (corresponding to abrupt changes of the vortex chain parameters) to magnetic field stochastization within a layer of the collisionless skin depth scale, which occurs before the magnetic island overlapping takes place. This provides a new mechanism for the anomalous transport. (orig.)
The role of flow shear in the ballooning stability of tokamak transport barriers
International Nuclear Information System (INIS)
Webster, A.J.; Wilson, H.R.; Scaife, A.M.M.
2004-01-01
A tokamak's economic performance is strongly affected by the plasma pressure that it may sustain, which in turn is limited by the maximum pressure gradients that may be supported. Ballooning modes are typically driven unstable by increasing the pressure gradient, and because they can radially extend across many rational surfaces, they can seriously reduce a plasma's energy confinement. Here an eigenmode formulation is used to study the stability of ballooning modes in internal transport barriers ('ITBs'), in which very strong pressure gradients and flow shears may be found. This extends previous studies that used an 'eikonal' formulation, as it enables the study of: ballooning modes with a finite toroidal mode-number n (finite wavelength perpendicular to the magnetic field), to find new solution branches, to obtain the eigenmode structures, and to investigate the effects of a radially varying equilibrium. The structure of a finite n ballooning mode in flow shear is found to be significantly affected by a radially varying equilibrium, and at low flow shears the growth rates are increased above those of modes studied in the limit of n→∞. The different solution branches can couple as the flow shear is increased, leading to a pair of asymmetric mode structures with complex conjugate growth rates. These effects are shown to be a consequence of the mode trying to localize at the most unstable radial location, and its desire to rotate with the flow. In addition, closer to marginal stability a sufficiently strong flow-shear can (at least for some cases), destabilize a previously stable mode
Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes
Yanqing, HUANG; Tianyang, XIA; Bin, GUI
2018-04-01
The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.
Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors
International Nuclear Information System (INIS)
Pouranvari, M.; Marashi, S.P.H.
2011-01-01
Highlights: → Interfacial to pullout failure mode transition for AHSS RSWs is studied. → An analytical mode is proposed to predict failure mode of AHSS RSWs. → Hardness characteristics of RSWs plays key role in the failure mode transition. - Abstract: Failure mode of resistance spot welds is a qualitative indicator of weld performance. Two major types of spot weld failure are pull-out and interfacial fracture. Interfacial failure, which typically results in reduced energy absorption capability, is considered unsatisfactory and industry standards are often designed to avoid this occurrence. Advanced High Strength Steel (AHSS) spot welds exhibit high tendency to fail in interfacial failure mode. Sizing of spot welds based on the conventional recommendation of 4t 0.5 (t is sheet thickness) does not guarantee the pullout failure mode in many cases of AHSS spot welds. Therefore, a new weld quality criterion should be found for AHSS resistance spot welds to guarantee pull-out failure. The aim of this paper is to investigate and analyze the transition between interfacial and pull-out failure modes in AHSS resistance spot welds during the tensile-shear test by the use of analytical approach. In this work, in the light of failure mechanism, a simple analytical model is presented for estimating the critical fusion zone size to prevent interfacial fracture. According to this model, the hardness ratio of fusion zone to pull-out failure location and the volume fraction of voids in fusion zone are the key metallurgical factors governing type of failure mode of AHSS spot welds during the tensile-shear test. Low hardness ratio and high susceptibility to form shrinkage voids in the case of AHSS spot welds appear to be the two primary causes for their high tendency to fail in interfacial mode.
Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks
International Nuclear Information System (INIS)
Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ
1989-07-01
High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs
Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.
2018-01-01
The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Shear dilatancy and acoustic emission in dry and saturated granular materials
Brodsky, E. E.; Siman-Tov, S.
2017-12-01
Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via
Energy Technology Data Exchange (ETDEWEB)
Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N. [College of Science, Donghua University, Shanghai 201620 (China); Xu, G. S., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2015-06-15
The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.
Softening of the elastic shear mode C{sub 66} in iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Boehmer, Anna; Burger, Philipp [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Fakultaet fuer Physik, D-76128 Karlsruhe (Germany); Hardy, Frederic; Schweiss, Peter; Fromknecht, Rainer; Wolf, Thomas; Meingast, Christoph [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Reinecker, Marius; Schranz, Wilfried [Universitaet Wien, Fakultaet fuer Physik, A-1090 Wien, Vienna (Austria)
2013-07-01
The structural phase transition of underdoped iron-based superconductors is accompanied by a large softening of the elastic shear mode C{sub 66}, which has attracted considerable attention. This softening has been discussed both in terms of orbital and spin-nematic fluctuations which would be responsible for the structural phase transition and, possibly, superconductivity. However, sample requirements have so far restricted experimental investigations of C{sub 66} (via measurements of the ultrasound velocity) to the Ba(Fe,Co){sub 2}As{sub 2} system. Here, we report on a new technique, based on a three-point bending setup, to probe the Young's modulus of a sample with a capacitance dilatometer. For certain orientations, the Young's modulus is related to the elastic constant C{sub 66} whose effective temperature dependence can be obtained. Platelet-like samples, as frequently encountered for iron-based systems, are easily studied with our setup. Data on several systems are presented and discussed.
Ballooning instabilities in tokamaks with sheared toroidal flows
International Nuclear Information System (INIS)
Waelbroeck, F.L.; Chen, L.
1990-11-01
The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Energy Technology Data Exchange (ETDEWEB)
Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)
2016-03-29
The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.
BOUROUIS FAIROUZ; MILI FAYCAL
2012-01-01
Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...
Poloidal rotation and the evolution of H-mode and VH-mode profiles
International Nuclear Information System (INIS)
Hinton, F.L.; Staebler, G.M.; Kim, Y.B.
1993-12-01
The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode
Experimental investigation of separated shear layer from a leading ...
Indian Academy of Sciences (India)
Shear layer development over a thick flat plate with a semi-circular leading edge is investigated for a range of angles of attack under different pressure gradients for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The characteristics of the separated shear layer are very well documented through ...
Contained modes in mirrors with sheared rotation
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2010-01-01
In mirrors with ExB rotation, a fixed azimuthal perturbation in the laboratory frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and nonpeaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.
Spectrum of resistive MHD modes in cylindrical plasmas
International Nuclear Information System (INIS)
Ryu, C.M.; Grimm, R.C.
1983-07-01
A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed
Energy Technology Data Exchange (ETDEWEB)
Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)
2016-03-15
Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.
Nonlinear drift tearing mode. Strong mode of excitation and stabilization mechanisms
International Nuclear Information System (INIS)
Galeev, A.A.; Zelenyj, L.M.; Kuznetsova, M.M.
1985-01-01
A nonlinear theory of magnetic disturbance development in collisionless configurations with magnetic field shear is considered. The instability evolution is investigated with account for the dynamics of ions and potential electric fields which determine the mode stabilization. It has been found that the drift tearing mode possesses metastable properties: in a nonlinear mode even the growth of linearly stable disturbances of the finite amplitude is possible
Contained Modes In Mirrors With Sheared Rotation
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2010-01-01
In mirrors with E x B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.
Contained Modes In Mirrors With Sheared Rotation
Energy Technology Data Exchange (ETDEWEB)
Abraham J. Fetterman and Nathaniel J. Fisch
2010-10-08
In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________
Glass Masonry - Experimental Verification of Bed Joint under Shear
Fíla, J.; Eliášová, M.; Sokol, Z.
2017-10-01
Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.
Test and lower bound modeling of keyed shear connections in RC shear walls
DEFF Research Database (Denmark)
Sørensen, Jesper Harrild; Herfelt, Morten Andersen; Hoang, Linh Cao
2018-01-01
This paper presents an investigation into the ultimate behavior of a recently developed design for keyed shear connections. The influence of the key depth on the failure mode and ductility of the connection has been studied by push-off tests. The tests showed that connections with larger key...
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
Directory of Open Access Journals (Sweden)
Mao Liangjie
Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Directory of Open Access Journals (Sweden)
Koosha Khorramian
Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Directory of Open Access Journals (Sweden)
Ahmad Hazrina
2017-01-01
Full Text Available This paper investigates the effects of steel fibres as a replacement to the conventional reinforcement under flexural behaviour and punching shear in self-compacting (SCC ribbed slab reinforced with steel fibres. Four ribbed slabs with similar dimensions of 2.8 m length × 1.2 m width and 0.2m thickness were constructed. Two of the samples were considered as control samples (conventionally reinforced with reinforcement bars and welded mesh while another two samples were fully reinforced with 1% (80 kg/m3 volume of steel fibres incorporated to the SCC mix. For the flexural behaviour study, the ribbed slab samples were subjected to two line loads under four point bending. Meanwhile, for the punching shear analysis, the ribbed slab samples were subjected to a point load to simulate loading from the column. The analysis of the experimental results displayed that steel fibres incorporation had been found to effectively delay the first crack occurrence under both flexural and punching shear. The steel fibre replacement has been proven to be able to sustain up to 80% and 73% of the ultimate load resistance for flexural and punching shear, respectively, in comparison to conventionally reinforced ribbed slab structure. The visual observation carried out during the experiment exhibited similar failure mode for both steel fibre reinforced and control samples. This was observed for both flexural and punching shear samples. Overall, it can be concluded that the steel fibres had displayed a promising potential to effectively replace the conventional reinforcements.
Rifting Thick Lithosphere - Canning Basin, Western Australia
Czarnota, Karol; White, Nicky
2016-04-01
The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.
Tkachenko modes as sources of quasiperiodic pulsar spin variations
International Nuclear Information System (INIS)
Noronha, Jorge; Sedrakian, Armen
2008-01-01
We study the long wavelength shear modes (Tkachenko waves) of triangular lattices of singly quantized vortices in neutron star interiors taking into account the mutual friction between the superfluid and the normal fluid as well as the shear viscosity of the normal fluid. The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly damped if the coupling between the superfluid and the normal fluid is small. In strong coupling, their oscillation frequencies are lower and are undamped for small and moderate shear viscosities. The periods of these modes are consistent with the observed ∼100-1000 day variations of spin for PSR 1828-11
Effect of tip clearance on wall shear stress of an axial LVAD
Sarath, S.; Vikas, R.
2017-09-01
Wall shear stress is a crucial parameter used for blood damage analysis, and typically a value of 400 Pa is set as a limit. Tip clearance is a major factor contributing to hemolysis and pump efficiency. In this study, different tip gap configurations are used to analyse the wall shear stress developed on the blade surface of a constant thickness blade design, and a varying thickness blade design using CFD analysis. It was found that, for a particular geometry, as the clearance gap reduces, flow rate over the high wall shear stress area decreases even though the high wall shear stress span is found to extend. For each design, the optimum clearance gap is iteratively attained, keeping the maximum WSS as a limiting factor. Thus a better pump designs is obtained, whose leakage flow patterns are lower than that of the initial design, hence also leading to higher pump efficiency.
Miao, Hongchen; Li, Faxin
2015-09-01
The piezoelectric face-shear ( d36 ) mode may be the most useful shear mode in piezoelectrics, while currently this mode can only exist in single crystals of specific point groups and cut directions. Theoretically, the d36 coefficient vanishes in piezoelectric ceramics because of its transversally isotropic symmetry. In this work, we modified the symmetry of poled PZT ceramics from transversally isotropic to orthogonal through ferroelastic domain switching by applying a high lateral stress along the "2" direction and holding the stress for several hours. After removing the compression, the piezoelectric coefficient d31 is found much larger than d32 . Then, by cutting the compressed sample along the Z x t ±45 ° direction, we realized d36 coefficients up to 206 pC/N , which is measured by using a modified d33 meter. The obtained large d36 coefficients in PZT ceramics could be very promising for face-shear mode resonators and shear horizontal wave generation in nondestructive testing.
Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials.
Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G; Tan, Qing-Hai; Tan, Ping-Heng; Meunier, Vincent
2017-12-26
Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have been extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs' unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with
Nondimensional scaling of magnetorheological rotary shear mode devices using the Mason number
Becnel, Andrew C.; Sherman, Stephen; Hu, Wei; Wereley, Norman M.
2015-04-01
Magnetorheological fluids (MRFs) exhibit rapidly adjustable viscosity in the presence of a magnetic field, and are increasingly used in adaptive shock absorbers for high speed impacts, corresponding to high fluid shear rates. However, the MRF properties are typically measured at very low (γ ˙10,000 s-1) Searle cell magnetorheometer, along with a full scale rotary-vane magnetorheological energy absorber (γ ˙>25,000 s-1) are employed to analyze MRF property scaling across shear rates using a nondimensional Mason number to generate an MRF master curve. Incorporating a Reynolds temperature correction factor, data from both experiments is shown to collapse to a single master curve, supporting the use of Mason number to correlate low- and high-shear rate characterization data.
Shear flow effects on ion thermal transport in tokamaks
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.
1995-03-01
From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory
Study of magnetorheological fluids at high shear rates
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaojie; Gordaninejad, Faramarz [University of Nevada, Department of Mechanical Engineering, Reno, NV (United States)
2006-08-15
The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s{sup -1}. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported. (orig.)
Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.
2015-11-01
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
Kelvin-Helmholtz instability as a possible cause of edge localized modes
International Nuclear Information System (INIS)
Strauss, H.R.
1992-01-01
Edge localized modes may be a Kelvin-Helmholtz instability caused by the sheared rotation of H-mode plasmas. The Kelvin-Helmholtz instability is stabilized by coupling to Alfven waves. There is a critical velocity gradient, of the order of the Alfven velocity divided by the magnetic shear length. This is verified in a numerical simulation. The critical velocity shear is consistent with experiment. A non-linear simulation shows how the Kelvin-Helmholtz mode can cause oscillations of the velocity profile. (author). Letter-to-the-editor. 13 refs, 6 figs
Effect of shear connectors on local buckling and composite action in steel concrete composite walls
International Nuclear Information System (INIS)
Zhang, Kai; Varma, Amit H.; Malushte, Sanjeev R.; Gallocher, Stewart
2014-01-01
Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t p ) and yield stress (F y ), and the shear connector spacing (s), stiffness (k s ), and strength (Q n ) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t p ) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis
Effect of shear connectors on local buckling and composite action in steel concrete composite walls
Energy Technology Data Exchange (ETDEWEB)
Zhang, Kai, E-mail: kai-zh@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R., E-mail: smalusht@bechtel.com [Bechtel Power Corporation, Frederick, MD (United States); Gallocher, Stewart, E-mail: stewart.gallocher@steelbricks.com [Modular Walling Systems Ltd., Glasgow (United Kingdom)
2014-04-01
Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t{sub p}) and yield stress (F{sub y}), and the shear connector spacing (s), stiffness (k{sub s}), and strength (Q{sub n}) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t{sub p}) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.
The Effect of Displacement Mode of Rigid Retaining Walls on Shearing Bands by Active Earth Pressure
Directory of Open Access Journals (Sweden)
A. Sekkel
2013-10-01
Full Text Available This work treats the physical modeling of failure mechanisms by active earth pressure. This last is developed by retaining wall movement. A lot of research showed that wall displacement has a significant effect on active earth pressure. A good comprehension of active earth pressure phenomenon and its failure mechanisms help us to better conceive retaining walls. The conception of a small-scale model allowed the realization of active earth pressure tests, while displacing the mobile wall toward the outside of the massif. The studied material is that of Schneebeli; light two-dimensional material made of cylindrical plastic rollers, simulating granular non-cohesive soil. The evolution of shearing zones under continuous and discontinuous displacement modes of mobile walls by correlation pictures allows the investigation of the localization of deformations and failure mechanisms.
Modeling combined tension-shear failure of ductile materials
International Nuclear Information System (INIS)
Partom, Y
2014-01-01
Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.
Coherent structures in compressible free-shear-layer flows
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center
1997-08-01
Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.
Viscoresistive g-modes and ballooning
International Nuclear Information System (INIS)
Dagazian, R.Y.; Paris, R.B.
1980-01-01
The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability
A Novel Geometry for Shear Test Using Axial Tensile Setup
Directory of Open Access Journals (Sweden)
Sibo Yuan
2018-05-01
Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.
Analysis of current diffusive ballooning mode
International Nuclear Information System (INIS)
Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.
1993-04-01
The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)
International Nuclear Information System (INIS)
Berger, C.D.; Lane, B.H.; Dunsmore, M.R.
1983-02-01
Accurate measurement of chest wall thickness is necessary for estimation of lung burden of transuranic elements in humans. To achieve tis capability, the ORNL Whole Body Counter has acquired a B-mode ultrasonic imaging system for defining the structure within the thorax of the body. This report contains a review of the ultrasound system in use at the ORNL Whole Body Counter, including its theory of operation, and te procedure for use of the system. Future developmental plans are also presented
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.
Collisional drift waves in the H-mode edge
International Nuclear Information System (INIS)
Sen, S.
1994-01-01
The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs
High n ballooning modes in highly elongated tokamaks
International Nuclear Information System (INIS)
An, C.H.; Bateman, G.
1980-02-01
An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity
Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test
Bahaaddini, M.
2017-05-01
The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.
2010-01-01
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
Czajka, Alina; Jeon, Sangyong
2017-01-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...
Directory of Open Access Journals (Sweden)
Shiro Satoh
2018-04-01
Full Text Available Thermocompression bonding for wafer-level hermetic packaging was demonstrated at the lowest temperature of 370 to 390 °C ever reported using Al films with thin Sn capping or insertions as bonding layer. For shrinking the chip size of MEMS (micro electro mechanical systems, a smaller size of wafer-level packaging and MEMS–ASIC (application specific integrated circuit integration are of great importance. Metal-based bonding under the temperature of CMOS (complementary metal-oxide-semiconductor backend process is a key technology, and Al is one of the best candidates for bonding metal in terms of CMOS compatibility. In this study, after the thermocompression bonding of two substrates, the shear fracture strength of dies was measured by a bonding tester, and the shear-fractured surfaces were observed by SEM (scanning electron microscope, EDX (energy dispersive X-ray spectrometry, and a surface profiler to clarify where the shear fracture took place. We confirmed two kinds of fracture mode. One mode is Si bulk fracture mode, where the die shear strength is 41.6 to 209 MPa, proportionally depending on the area of Si fracture. The other mode is bonding interface fracture mode, where the die shear strength is 32.8 to 97.4 MPa. Regardless of the fracture modes, the minimum die shear strength is practical for wafer-level MEMS packaging.
The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions
Buscall, Richard; Kusuma, Tiara E.; Stickland, Anthony D.; Rubasingha, Sayuri; Scales, Peter J.; Teo, Hui-En; Worrall, Graham L.
2014-01-01
The behaviour in simple shear of two concentrated and strongly cohesive mineral suspensions showing highly non-monotonic flow curves is described. Two rheometric test modes were employed, controlled stress and controlled shear-rate. In controlled stress mode the materials showed runaway flow above a yield stress, which, for one of the suspensions, varied substantially in value and seemingly at random from one run to the next, such that the up flow-curve appeared to be quite irreproducible. Th...
High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability
International Nuclear Information System (INIS)
Nakajima, N.
1996-01-01
In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics
Estimation of basal shear stresses from now ice-free LIA glacier forefields in the Swiss Alps
Fischer, Mauro; Haeberli, Wilfried; Huss, Matthias; Paul, Frank; Linsbauer, Andreas; Hoelzle, Martin
2013-04-01
In most cases, assessing the impacts of climatic changes on glaciers requires knowledge about the ice thickness distribution. Miscellaneous methodological approaches with different degrees of sophistication have been applied to model glacier thickness so far. However, all of them include significant uncertainty. By applying a parameterization scheme for ice thickness determination relying on assumptions about basal shear stress by Haeberli and Hoelzle (1995) to now ice-free glacier forefields in the Swiss Alps, basal shear stress values can be calculated based on a fast and robust experimental approach. In a GIS, the combination of recent (1973) and Little Ice Age (LIA) maximum (around 1850) glacier outlines, central flowlines, a recent Digital Elevation Model (DEM) and a DEM of glacier surface topography for the LIA maximum allows extracting local ice thickness over the forefield of individual glaciers. Subsequently, basal shear stress is calculated via the rheological assumption of perfect-plasticity relating ice thickness and surface slope to shear stress. The need of only very few input data commonly stored in glacier inventories permits an application to a large number of glaciers. Basal shear stresses are first calculated for subsamples of glaciers belonging to two test sites where the LIA maximum glacier surface is modeled with DEMs derived from accurate topographic maps for the mid 19th century. Neglecting outliers, the average resulting mean basal shear stress is around 80 kPa for the Bernina region (range 25-100 kPa) and 120 kPa (range 50-150 kPa) for the Aletsch region. For the entire Swiss Alps it is 100 kPa (range 40-175 kPa). Because complete LIA glacier surface elevation information is lacking there, a DEM is first created from reconstructed height of LIA lateral moraines and trimlines by using a simple GIS-based tool. A sensitivity analysis of the input parameters reveals that the performance of the developed approach primarily depends on the
Buckling Response of Thick Functionally Graded Plates
Directory of Open Access Journals (Sweden)
BOUAZZA MOKHTAR
2014-11-01
Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.
Discontinuity model for internal transport barrier formation in reversed magnetic shear plasmas
International Nuclear Information System (INIS)
Kishimoto, Y.; Kim, J-Y.; Horton, W.; Tajima, T.; LeBrun, M.J.
2001-01-01
To aid in understanding the internal transport barrier (ITB) being formed in reversed magnetic shear experiments, in addition to the well known shear flow effect, we point out an important nonlocal effect and/or finite size effect which comes from the complex behavior of the nonlocal mode over a finite radial region around the minimum q(safety factor)-surface. The nonlocal mode changes its structure depending on the sign of the magnetic shear and due to this fact, the nonlocal modes are weakly excited across the q min -surface. This leads to a discontinuity or gap which disconnects the phase relation in the global wave structure across the q min -surface. Once such a discontinuity (or gap) is formed, transport suppression occurs and therefore a transport barrier can be expected near the q min -surface. We confirm the existence of this discontinuity using a toroidal particle simulation. (author)
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
Shear wave sonoelastography in infants with congenital muscular torticollis.
Park, Gi Young; Kwon, Dong Rak; Kwon, Dae Gil
2018-02-01
Congenital muscular torticollis (CMT) is characterized by shortening or excessive contraction of the sternocleidomastoid muscle (SCM). The main purpose of this study was to evaluate the feasibility of quantifying SCM stiffness using acoustic radiation force impulse (ARFI) sonoelastography in infants with CMT. Twenty infants with an SCM thickness greater than 10 mm with or without involvement of the entire SCM length (limitation of neck rotation passive range of motion [PROM]: group 1S >30°, group 1M = 15°-30°) and 12 infants with an SCM thickness smaller than 10 mm with or without involvement of any part of SCM (group 2) were included. The SCM thickness was measured using real time B-mode ultrasound, and the local SCM shear wave velocity (SWV) and subcutaneous fat layer using ARFI sonoelastography. The neck rotation PROM was significantly greater in group 1S (36.5° ± 5.3°) than in group 1M (18.8° ± 4.9°; P SCM in the affected side (2.96 ± 0.99 m/s) was significantly higher than that in the unaffected side (1.50 ± 0.30 m/s; P SCM was significantly higher in group 1S than in group 1M. There was significant correlation between the degree of PROM deficit of neck rotation and the SWV of the affected SCM (r = .75; P SCM in relationship to the limitation of neck rotation PROM in infants with CMT, if there was no difference in SCM thickness among infants.
DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING
Ozgan, Korhan; Daloglu, Ayse T.
2014-01-01
In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...
Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls
Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu
2017-10-01
In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.
Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells
Anastasiadis, John S.; Simitses, George J.
A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.
Simulation of reinforced concrete short shear wall subjected to cyclic loading
International Nuclear Information System (INIS)
Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.
2014-01-01
Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one
Discontinuity model for internal transport barrier formation in reversed magnetic shear plasmas
International Nuclear Information System (INIS)
Kishimoto, Y.; Dettrick, S.A.; Li, J.Q.; Shirai, S.; Kim, J.Y.; Horton, W.; Tajima, T.; LeBrun, M.J.
2000-01-01
It is becoming clear that tokamak anomalous transport is dominated by radially extended non-local modes which originate from strong toroidal coupling of rational surfaces in non-uniform plasmas. To aid in understanding the internal transport barrier (ITB) formed in reversed magnetic shear experiments, in addition to the well known shear flow effect, the article points out an important non-local effect and/or finite size effect which comes from the complex behaviour of the mode over a finite radial region around the minimum q (safety factor) surface. The non-local mode, which is characterized by its radial extent and the degree of tilting in the poloidal direction (Δr, θ 0 ), changes its structure depending on the sign of the magnetic shear, and as a result such modes are weakly excited across the q min surface. This leads to a discontinuity or gap which disconnects the phase relation in the global wave structure across the q min surface. Once such a discontinuity (or gap) is formed, transport suppression occurs and therefore a transport barrier can be expected near the q min surface. The existence of this discontinuity is confirmed through use of a toroidal particle simulation. It is also shown that whether such a discontinuity is efficiently established depends on the presence of the radial electric field and the related plasma shear flow. (author)
Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Kramer, G.J.; Nazikian, R.
2011-01-01
A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Reduced transport and ER shearing in improved confinement regimes in JT-60U
International Nuclear Information System (INIS)
Shirai, H.; Kikuchi, M.; Takizuka, T.
2001-01-01
The global confinement and the local transport properties of improved core confinement plasmas in JT-60U have been studied in connection with E r shear formation. The improved core confinement mode with ITB, the internal transport barrier, is roughly classified into 'parabolic' type ITBs and 'box' type ITBs. The parabolic type ITB has the reduced thermal diffusivity, χ, in the core region; however, the E r shear, dE r /dr, is not so strong. The box type ITB has a very strong E r shear at the thin ITB layer and the χ value decreases to the level of neoclassical transport there. The estimated ExB shearing rate, ω ExB , becomes almost the same as the linear growth rate of the drift microinstability, γ L , at the ITB layer in the box type ITB. Experiments of hot ion mode plasmas during the repetitive L-H-L transition shows that the thermal diffusivity clearly depends on the E r shear and the strong E r shear contributes to the reduced thermal diffusivity. (author)
Reduced transport and Er shearing in improved confinement regimes in JT-60U
International Nuclear Information System (INIS)
Shirai, H.; Kikuchi, M.; Takizuka, T.
1999-01-01
The global confinement and the local transport properties of improved core confinement plasmas in JT-60U were studied in connection with E r shear formation. In the improved core confinement mode with internal transport barriers (ITBs), these are roughly classified into 'parabolic type' ITBs and 'box type' ITBs. The parabolic type ITB has a reduced thermal diffusivity χ in the core region; however, the E r shear, dE r /dr, is not as strong. The box type ITB has a very strong E r shear at the thin ITB layer and χ decreases to the level of neoclassical transport there. The estimated E x B shearing rate, ω ExB , becomes almost the same as the linear growth rate of the drift microinstability, γ L , at the ITB layer in the box type ITB. Experiments with hot ion mode plasmas during the repetitive L-H-L transition showed that the thermal diffusivity clearly depends on the E r shear and the strong E r shear contributes to the reduced thermal diffusivity. (author)
Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M
2010-12-01
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.
An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation
Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.
2004-12-01
The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.
Lower hybrid waves instability in a velocity–sheared inhomogenous ...
African Journals Online (AJOL)
An electrostatic linear kinetic analysis of velocity-sheared inhomogeneous charged dust streaming parallel to a magnetic field in plasma is presented. Excited mode and the growth rates are derived in the lower hybrid-like mode regime, with collisional effects included. In the case where the drift velocity u is very small the ...
International Nuclear Information System (INIS)
Zhang, Hongqiang; Wei, Ajuan; Qiu, Xiaoming; Chen, Jianhe
2014-01-01
Highlights: • We examine changes of microstructure of dissimilar thickness DP600/DP780 joints. • The hardness profile of RSW joints can be predicted by the equation. • Failure modes, peak load and energy describes the mechanical properties of joints. • The nugget diameter is the key factor of transition between the failure modes. - Abstract: In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints
Physics of the L-mode to H-mode transition in tokamaks
International Nuclear Information System (INIS)
Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D.; Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L.; Finkenthal, D.; Hillis, D.L.; Wade, M.R.; Matsumoto, H.; Watkins, J.G.
1992-07-01
Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E x B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories
Evaluation of shear mounted elastomeric damper
Zorzi, E.; Walton, J.
1982-01-01
Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.
Hybrid simulations of current-carrying instabilities in Z-pinch plasmas with sheared axial flow
International Nuclear Information System (INIS)
Sotnikov, Vladimir I.; Makhin, Volodymyr; Bauer, Bruno S.; Hellinger, Petr; Travnicek, Pavel; Fiala, Vladimir; Leboeuf, Jean-Noel
2002-01-01
The development of instabilities in z-pinch plasmas has been studied with three-dimensional (3D) hybrid simulations. Plasma equilibria without and with sheared axial flow have been considered. Results from the linear phase of the hybrid simulations compare well with linear Hall magnetohydrodynamics (MHD) calculations for sausage modes. The hybrid simulations show that sheared axial flow has a stabilizing effect on the development of both sausage and kink modes
Adiabatic shear localization in ultrafine grained 6061 aluminum alloy
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)
2016-10-15
Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.
Optimization of negative central shear discharges in shaped cross sections
International Nuclear Information System (INIS)
Turnbull, A.D.; Chu, M.S., Taylor, T.S., Casper, T.A., Rice, B.W.; Greene, J.M., Greenfield, C.M., La Haye, R.J., Lao, L.L., Lee, B.J.; Miller, R.L., Ren, C., Strait, E.J., Tritz, K.; Rettig, C.L., Rhodes, T.L.; Sauter, O.
1996-10-01
Magnetohydrodynamic (MHD) stability analyses of Negative Central Shear (NCS) equilibria have revealed a new understanding of the limiting MHD instabilities in NCS experiments. Ideal stability calculations show a synergistic effect between cross section shape and pressure profile optimization; strong shaping and broader pressure independently lead to moderately higher Β limits, but broadening of the pressure profile in a strongly dee-shaped cross- section leads to a dramatic increase in the ideal Β limit. Localized resistive interchange (RI) modes can be unstable in the negative shear region and are most restrictive for peaked pressure profiles. Resistive global modes can also be destabilized significantly below the ideal P limit. Experiments largely confirm the general trends, and diagnostic measurements and numerical stability calculations are found to be in good qualitative agreement. Observed disruptions in NCS discharges with L-mode edge and strongly peaked pressure, appear to be initiated by interactions between the RI, and the global ideal and resistive modes
Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong
2017-08-01
To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P breast lesions.
Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma
Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.
2014-02-01
The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.
Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak
International Nuclear Information System (INIS)
Rice, B.W.; Burrell, K.H.; Lao, L.L.
1996-01-01
Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2
Development of shear bands in amorphous-crystalline metallic alloys
International Nuclear Information System (INIS)
Pozdnyakov, V.A.
2004-01-01
A theoretical study is made into conditions of shear band evolution in amorphous-crystalline alloys with various morphological types of structural constituents. The condition of shear band evolution in thin amorphous alloys in the interior of the crystalline matrix is obtained. It is shown that a scale effect exists which manifests itself in suppression of the process of localized plastic flow with amorphous alloy thickness decreasing down to the limit. The analysis of the condition for shear band evolution in an amorphous alloy with nanocrystalline inclusions is accomplished. The relationship of a critical stress of shear band evolution to a volume fraction of disperse crystal inclusions is obtained. A consideration is also given to the evolution of shear bands in the material containing amorphous and crystalline areas of micro meter size. For the alloy with the structure of this type conditions for propagation of localized flows by a relay race type mechanism are determined [ru
Magnetic field reconnexion in a sheared field
International Nuclear Information System (INIS)
Ugai, M.
1981-01-01
A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)
A film-based wall shear stress sensor for wall-bounded turbulent flows
Amili, Omid; Soria, Julio
2011-07-01
In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.
Focus: Nucleation kinetics of shear bands in metallic glass.
Wang, J Q; Perepezko, J H
2016-12-07
The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.
Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades
Palacios, Jose Luis
A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite
Transformation of fault slip modes in laboratory experiments
Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim
2017-04-01
Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random
Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.
2016-01-01
Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986
Microturbulence and Flow Shear in High-performance JET ITB Plasma; TOPICAL
International Nuclear Information System (INIS)
R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov
2001-01-01
The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists
International Nuclear Information System (INIS)
Kamal, A; Giurgiutiu, V
2014-01-01
This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient d 35 are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models. (paper)
Shear wave propagation in piezoelectric-piezoelectric composite layered structure
Directory of Open Access Journals (Sweden)
Anshu Mli Gaur
Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.
International Nuclear Information System (INIS)
Gohil, P.; Burrell, K.H.; Groebner, R.J.; Osborne, T.H.; Doyle, E.J.; Rettig, C.L.
1993-08-01
Measurements of the radial electric field, E r , with high spatial and high time resolution in H-mode and VH-mode discharges in the DIII-D tokamak have revealed the significant influence of the shear in E r on confinement and transport in these discharges. These measurements are made using the DIII-D Charge Exchange Recombination (CER) System. At the L-H transition in DIII-D plasmas, a negative well-like E r profile develops just within the magnetic separatrix. A region of shear in E r results, which extends 1 to 2 cm into the plasma from the separatrix. At the transition, this region of sheared E r exhibits the greatest increase in impurity ion poloidal rotation velocity and the greatest reduction in plasma fluctuations. A transport barrier is formed in this same region of E x B velocity shear as is signified by large increases in the observed gradients of the ion temperature, the carbon density, the electron temperature and electron density. The development of the region of sheared E r , the increase in impurity ion poloidal rotation, the reduction in plasma turbulence, and the transport barrier all occur simultaneously at the L-H transition. Measurements of the radial electric field, plasma turbulence, thermal transport, and energy confinement have been performed for a wide range of plasma conditions and configurations. The results support the supposition that the progression of improving confinement at the L-H transition, into the H-mode and then into the VH-mode can be explained by the hypothesis of the suppression of plasma turbulence by the increasing penetration of the region of sheared E x B velocity into the plasma interior
Avalanche weak layer shear fracture parameters from the cohesive crack model
McClung, David
2014-05-01
Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0
Directory of Open Access Journals (Sweden)
Jihong Ye
2017-02-01
Full Text Available A series of structural vulnerability analyses are conducted on a reinforced cold-formed steel (RCFS shear wall system and a traditional cold-formed steel (CFS shear wall system subjected to earthquake hazard based on forms in order to investigate their failure mechanisms. The RCFS shear wall adopts rigid beam-column joints and continuous concrete-filled CFS tube end studs rather than coupled-C section end studs that are used in traditional CFS shear walls, to achieve the rigid connections in both beam-column joints and column bases. The results show that: the RCFS and traditional CFS shear wall systems both exhibit the maximum vulnerability index associated with the failure mode in the first story. Therefore, the first story is likely to be a weakness of the CFS shear wall system. Once the wall is damaged, the traditional CFS shear wall system would collapse because the shear wall is the only lateral-resisting component. However, the collapse resistance of the RCFS shear wall system is effectively enhanced by the second defense, which is provided by a framework integrated by rigid beam-column joints and fixed column bases. The predicted collapse mode with maximum vulnerability index that was obtained by structural vulnerability analysis agrees well with the experimental result, and the structural vulnerability method is thereby verified to be reasonable to identify the weaknesses of framed structures and predict their collapse modes. Additionally, the quantitative vulnerability index indicates that the RCFS shear wall system exhibits better robustness compared to the traditional one. Furthermore, the “strong frame weak wallboard” and the “strong column weak beam” are proposed in this study as conceptional designations for the RCFS shear wall systems.
A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
Directory of Open Access Journals (Sweden)
Tahar Hassaine Daouadji
2012-01-01
Full Text Available Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.
An Innovative Adaptive Pushover Procedure Based on Storey Shear
International Nuclear Information System (INIS)
Shakeri, Kazem; Shayanfar, Mohsen A.
2008-01-01
Since the conventional pushover analyses are unable to consider the effect of the higher modes and progressive variation in dynamic properties, recent years have witnessed the development of some advanced adaptive pushover methods. However in these methods, using the quadratic combination rules to combine the modal forces result in a positive value in load pattern at all storeys and the reversal sign of the modes is removed; consequently these methods do not have a major advantage over their non-adaptive counterparts. Herein an innovative adaptive pushover method based on storey shear is proposed which can take into account the reversal signs in higher modes. In each storey the applied load pattern is derived from the storey shear profile; consequently, the sign of the applied loads in consecutive steps could be changed. Accuracy of the proposed procedure is examined by applying it to a 20-storey steel building. It illustrates a good estimation of the peak response in inelastic phase
Transport and stability studies in negative central shear advanced tokamak plasmas
International Nuclear Information System (INIS)
Jayakumar, R.J.
2003-01-01
Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q min values. (orig.)
Transport and stability studies in negative central shear advanced tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Jayakumar, R.J. [Lawrence Livermore National Laboratory (United States)
2003-07-01
Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q{sub min} values. (orig.)
Energy Technology Data Exchange (ETDEWEB)
White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Edlund, E. M.; Kung, C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Holland, C. [University of California, San Diego (UCSD) San Diego, California 92093 (United States); Candy, J.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Reinke, M. L. [York University, Heslington, York YO10 5DD (United Kingdom); and others
2015-05-15
For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.
Properties study of LiNbO3 lateral field excited device working on thickness extension mode
International Nuclear Information System (INIS)
Zhi-Tian, Zhang; Ting-Feng, Ma; Chao, Zhang; Wen-Yan, Wang; Yan, Liu; Guan-Ping, Feng
2010-01-01
This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO 3 by using the extended Christoffel–Bechmann method. It finds that the lateral field excitation coupling factor for a-mode (quasi-extensional mode) reaches its maximum value of 28% on X-cut LiNbO 3 . The characteristics of a lateral field excitation device made of X-cut LiNbO 3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO 3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz–Leedom–Matthae model and tested using traditional pulse/echo method. A LiNbO 3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the −6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz–Leedom–Matthae model. Further analysis suggests that the LiNbO 3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Combined ideal and kinetic effects on reversed shear Alfven eigenmodes
International Nuclear Information System (INIS)
Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.
2011-01-01
A reversed shear Alfven eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, q min , is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with q min above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Directory of Open Access Journals (Sweden)
M. Said
2013-12-01
Full Text Available The shear behavior of reinforced concrete wide beams was investigated. The experimental program consisted of nine beams of 29 MPa concrete strength tested with a shear span-depth ratio equal to 3.0. One of the tested beams had no web reinforcement as a control specimen. The flexure mode of failure was secured for all of the specimens to allow for shear mode of failure. The key parameters covered in this investigation are the effect of the existence, spacing, amount and yield stress of the vertical stirrups on the shear capacity and ductility of the tested wide beams. The study shows that the contribution of web reinforcement to the shear capacity is significant and directly proportional to the amount and spacing of the shear reinforcement. The increase in the shear capacity ranged from 32% to 132% for the range of the tested beams compared with the control beam. High grade steel was more effective in the contribution of the shear strength of wide beams. Also, test results demonstrate that the shear reinforcement significantly enhances the ductility of the wide beams. In addition, shear resistances at failure recorded in this study are compared to the analytical strengths calculated according to the current Egyptian Code and the available international codes. The current study highlights the need to include the contribution of shear reinforcement in the Egyptian Code requirements for shear capacity of wide beams.
Fatigue crack growth in mode II of adhesively joined composites
DEFF Research Database (Denmark)
Biel, Anders; Toftegaard, Helmuth Langmaack
2017-01-01
, experiments are performed to derive material data for a crack propagation in shear i.e. in mode II. The shear loading of the crack is achieved by use of double cantilever beam specimens loaded with uneven bending moments. The experiments are performed under a constant cyclic displacement. An initial mode I...... loading is used to make the crack start in the adhesive. The crack length is measured using a load synchronized camera. Due to the shear loading the crack deviates from the adhesive layer into the laminate. A stable crack propagation is detected in the laminate. No influence have been detected due...... to an increasing crack length. It is also observed that the crack is trapped in the laminate; if the loading is changed to mode I the crack continues to propagate in the laminate....
International Nuclear Information System (INIS)
Ahmad, S.; Bukhari, I.A.
2007-01-01
The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)
Directory of Open Access Journals (Sweden)
Ahmed Ibrahim
2016-12-01
The obtained results indicate that, the proposed shear reinforcement system has a positive effect in the enhancement of both the punching shear capacity and the strain energy of interior slab–column connection of both normal and high strength concrete. The general finite element software ANSYS can be used successfully to simulate the punching shear behavior of reinforced concrete flat plates.
Boullier, Anne-Marie
The late Pan-African Abeibara-Rarhous shear zone in the Adrar des Iforas (Mali) is described and studied with the aim of defining the direction, sense of movement and amount of displacement along the zone. It is a strike-slip shear zone, the dextral sense of which is demonstrated at the scale of the map by the rotation of the related mylonitic foliation and at the scale of the thin section with characteristic microstructures. Preferred orientation of quartz c-axes is tentatively used; three quartz-rich samples of 35% or more quartz indicate dextral strike-slip movement, but other samples do not show preferred orientation of quartz c-axes. Strain measurements have been performed on one half of the shear zone using established techniques and a new technique using the thickness of mylonitic layering. The results vary along the length of the shear zone when using the same method and for the same cross-section when using the three methods together. A mean value of 4 km is obtained for total displacement which is low when considering the apparent width of the shear zone. This result is discussed in view of the assumptions involved in the strain estimation. The tectonic history of the Abeibara-Rarhous shear zone and its significance in the Trans-Saharan Pan-African collisional belt are discussed.
Simulations of enhanced reversed shear TFTR discharges with lower hybrid current drive
International Nuclear Information System (INIS)
Kesner, J.; Bateman, G.
1996-01-01
The BALDUR based BBK code permits predictive simulations of time-dependent tokamak discharges and has the capability to include neutral beam heating, pellet injection, bootstrap currents and lower hybrid current drive. BALDUR contains a theory based multi-regime transport model and previous work has shown excellent agreement with both L-mode and supershot TFTR discharges. These simulations reveal that core transport is dominated by η i and trapped electron modes and the outer region by resistive ballooning. We simulate enhanced reverse shear discharges by beginning with a supershot simulation with a reversed shear profile. Similarly to the TFTR experiments the reversed shear profile is obtained through the programming of the current during startup and the freezing in of these profiles by subsequent heating. At the time of transition into the enhanced confinement regime we turn off the η i and trapped-electron mode transport. We examine the further modification of the plasma current profile that can be obtained with the application of lower hybrid current drive. The results of these simulations will be discussed
Resistive instabilities in reversed shear discharges and wall stabilization on JT-60U
International Nuclear Information System (INIS)
Takeji, S.; Tokuda, S.; Fujita, T.; Suzuki, T.; Isayama, A.; Ide, S.; Ishii, Y.; Kamada, Y.; Koide, Y.; Matsumoto, T.; Oikawa, T.; Ozeki, T.; Sakamoto, Y.
2001-01-01
Resistive instabilities and wall stabilization of ideal low toroidal mode number, n, kink modes are investigated in JT-60U reversed shear discharges. Resistive interchange modes with n=1 are found to appear in reversed shear discharges with large pressure gradient at the normalized beta, β N , of about unity or even lower. The resistive interchange modes appear as intermittent burst-like magnetohydrodynamic (MHD) activities and higher n≤3 modes are observed occasionally in higher β N regime. No clear degradation of the plasma stored energy is observed by the resistive interchange modes themselves. It is also found that resistive interchange modes can lead to major collapse owing to a coupling with tearing modes at the outer mode rational surface over the minimum safety factor. Stability analysis revealed that stability parameter of tearing modes, Δ' , at the outer mode rational surface is affected by the free-boundary condition. The result is consistent with the experimental evidence that major collapse tends to occur when plasma edge safety factor, q*, is near integer values. Stabilization of ideal low n kink modes by the JT-60U wall is demonstrated. Magnetohydrodynamic perturbations that are attributed to resistive wall modes are observed followed by major collapse in wall-stabilized discharges. (author)
Leaping shampoo glides on a 500-nm-thick lubricating air layer
Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur
2013-11-01
When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.
Hierarchical order in wall-bounded shear turbulence
International Nuclear Information System (INIS)
Carbone, F.; Aubry, N.
1996-01-01
Since turbulence at realistic Reynolds numbers, such as those occurring in the atmosphere or in the ocean, involve a high number of modes that cannot be resolved computationally in the foreseeable future, there is a strong motivation for finding techniques which drastically decrease the number of such required modes, particularly under inhomogeneous conditions. The significance of this work is to show that wall-bounded shear turbulence, in its strongly inhomogeneous direction (normal to the wall), can be decomposed into one (or a few) space endash time mother mode(s), with each mother generating a whole family of modes by stretching symmetry. In other words, the generated modes are similar, dilated copies of their mother. In addition, we show that the nature of all previous modes strongly depends on the symmetry itself. These findings constitute the first scaling theory of inhomogeneous turbulence. copyright 1996 American Institute of Physics
Elvira, Luis; Resa, Pablo; Castro, Pedro
2013-03-01
In this paper, the principles of Thickness-Expansion Mode (TEM) resonators for the characterization of fluids are described. From the measurement of the resonance parameters of a TEM piezoelectric transducer, the compressional acoustic impedance of gases and liquids can be determined. Since the propagation of mechanical waves into the fluid is not necessary, information in a wide range of frequencies can be obtained. Alternatively, these sensors can be driven in combination with other ultrasonic techniques to simultaneously determine the density, speed of sound and viscosity of samples. Some potential applications include the probe monitoring of processes and the characterization of fluids under harsh conditions. The main experimental criteria for the design and construction of high-resolution impedance meters (such as piezoelectric material, protective coating or thermal response) have been studied using equivalent electrical circuit modeling and finite element analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Force and work to shear green southern pine logs at slow speed
Peter Koch
1971-01-01
When logs of three diameter classes and two specific gravity classes were sheared with a 3/8-inch-thick knife travelling at 2 inches per minute, shearing force and work averaged greatest for dense 13.6-inch logs cut with a knife having a 45o sharpness angle (73,517 pounds; 49,838 foot-pounds). Force and work averaged at least 5.1-inch bolts of...
A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear
International Nuclear Information System (INIS)
Onjun, T; Siriburanon, T; Onjun, O
2008-01-01
A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%
Model shear tests of canisters with smectite clay envelopes in deposition holes
International Nuclear Information System (INIS)
Boergesson, L.
1986-01-01
The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)
Meniscal shear stress for punching.
Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek
2009-01-01
Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.
Herwan, J.
2014-11-01
© Institute of Materials, Minerals and Mining 2014. Mode II delamination properties of Vectran stitched composites were investigated, and tabbed end notch flexural specimen testing was used to prevent premature failure. The effects of stitch density and stitch thread thickness were explored, and fibre compaction due to the stitching process was also verified. The results show that, in moderately stitched laminates (low stitch density), the improvement in GIIC was negligible. Crack bridging by the stitch threads at the crack zone were mostly compensated for the effect of fibre compaction, which reduced the GIIC values. Conversely, in densely stitched laminates (high stitch density), GIIC values were improved significantly (2·4 times higher than those of unstitched laminates). The effects of stitch thread thickness appeared to be negligible in moderately stitched laminates. For densely stitched laminates, thicker stitch thread (500 denier) possessed GIIC values that were 45·7% higher than thinner stitch thread (200 denier).
Herwan, J.; Kondo, A.; Morooka, S.; Watanabe, N.
2014-01-01
© Institute of Materials, Minerals and Mining 2014. Mode II delamination properties of Vectran stitched composites were investigated, and tabbed end notch flexural specimen testing was used to prevent premature failure. The effects of stitch density and stitch thread thickness were explored, and fibre compaction due to the stitching process was also verified. The results show that, in moderately stitched laminates (low stitch density), the improvement in GIIC was negligible. Crack bridging by the stitch threads at the crack zone were mostly compensated for the effect of fibre compaction, which reduced the GIIC values. Conversely, in densely stitched laminates (high stitch density), GIIC values were improved significantly (2·4 times higher than those of unstitched laminates). The effects of stitch thread thickness appeared to be negligible in moderately stitched laminates. For densely stitched laminates, thicker stitch thread (500 denier) possessed GIIC values that were 45·7% higher than thinner stitch thread (200 denier).
Directory of Open Access Journals (Sweden)
Florent Picot
2018-03-01
Full Text Available In this work, Friction Stir Welding (FSW was applied to join a stainless steel 316L and an aluminum alloy 5083. Ranges of rotation and translation speeds of the tool were used to obtain welding samples with different heat input coefficients. Depending on the process parameters, the heat generated by FSW creates thin layers of Al-rich InterMetallic Compound (IMC mainly composed of FeAl3, identified by energy dispersive spectrometry. Traces of Fe2Al5 were also depicted in some samples by X-ray diffraction analysis and transmission electron microscopy. Monotonous tensile tests performed on the weld joint show the existence of a maximum mechanical resistance for a judicious choice of rotation and translation speeds. It can be linked to an affected zone of average thickness of 15 µm which encompass the presence of IMC and the chaotic mixing caused by plastic deformation in this area. A thickness of less than 15 µm is not sufficient to ensure a good mechanical resistance of the joint. For a thickness higher than 15 µm, IMC layers become more brittle and less adhesive due to high residual stresses which induces numerous cracks after cooling. This leads to a progressive decrease of the ultimate shear stress supported by the bond.
A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins
Yin, An; Xie, Zhoumin; Meng, Lingsen
2018-06-01
A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.
Effect of shear strain on the deflection of a clamped magnetostrictive film-substrate system
International Nuclear Information System (INIS)
Ming Zhenghui; Ming Li; Bo Zou; Xia Luo
2011-01-01
The effect of in-plane shear strain of a clamped bimorph on the deflection produced by magnetization of the film is investigated. The deflection is found by minimizing the Gibbs free energy with respect to four parameters, strains and curvatures along x and y directions at the interface, by assuming that the curvature in the y direction varies as a function of aspect ratio w/l along x. A set of standard linear equations of four parameters are obtained and the deflection is expressed in terms of the four parameters by solving the equations using Cramer rules. The inconsistencies pointed out by previous authors are also reviewed. For actuators made of thick and short clamped film-substrate system, the in-plane shear deformation should not be omitted. The present calculation model can give a relatively simple and accurate prediction of deflection for thick and short specimens of aspect ratio w/l<10, which supports the results obtained by finite element modeling. - Highlights: → We model the deflection of a thick magnetostrictive film-substrate cantilever plate. → Total stress along z from magnetic field is not zero without external force. → Effect of in-plane shear strain in calculating deflection examined. → Analytical solution of deflection obtained by assuming a curvature function. → Shear strain for short cantilever film-substrate plate considered.
Postoperative influences of the torsional phacoemulsification on foveal thickness and corneal edema
Directory of Open Access Journals (Sweden)
Lei Li
2014-05-01
Full Text Available AIM: To report the influences onfoveal thickness and corneal edema after torsional phacoemulsification.METHODS: Totally 52 patients(52 eyeswith age-related cataract were randomly assigned to phacoemulsification using torsional mode(26 eyesor conventional ultrasound mode(26 eyes. The foveal thickness examined by optical coherence tomography(OCTafter surgery at 1, 4 and 12wk and corneal edema was examined by slit lamp after surgery at 1d.RESULTS: The postoperative averagefoveal thickness datas of the two groups, comparing with corresponding preoperative datas, were significantly augmented at 1, 4 and 12wk(PPP>0.05. The effects of corneal edema in torsional group were slighter(PCONCLUSION: The postoperative influences onfoveal thickness and corneal edema with torsional mode are slighter than that with ultrasound mode, and the postoperative reactions with torsional mode are efficiently reduced.
Integral equation based stability analysis of short wavelength drift modes in tokamaks
International Nuclear Information System (INIS)
Hirose, A.; Elia, M.
2003-01-01
Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)
Directory of Open Access Journals (Sweden)
Hajimiragha H
2006-06-01
Full Text Available Background and Aim: Cementation is one of the most critical steps of the porcelain restoration technique. However, limited information is available concerning the bond strength of current ceramic bonding systems. The aim of this study was to evaluate the shear bond strength of three dual-cure resin cements to IPS-Empress2 ceramics. Materials and Methods: In this experimental study, 30 pairs of IPS-Empress 2 ceramic discs were fabricated with 10 and 8 mm diameters and 2.5 mm thickness. After sandblasting and ultrasonic cleaning, the surfaces of all specimens were etched with 9% hydrofluoric acid for 60 seconds. Then, the three groups of 10 bonded specimens were prepared ceramic bonding resin systems including Panavia F2, Variolink II and Rely X ARC. After storage in 37±1c water for 24 hours and thermocycling in 5c and 55c water for 500 cycles with 1-minute dwell time, the shear bond strengths were determined using Instron machine at speed of 0.5mm/min. Data were analyzed by One Way ANOVA test. For multiple paired comparisons, the Tukey HSD method was used. The mode of failure was evaluated by scanning electro microscope (SEM. P<0.05 was considered as the limit of significance. Result: Significant differences were found between different cement types (P<0.05. Variolink II provided the highest bonding values with IPS-Empress2. A combination of different modes of failure was observed. Conclusion: Based on the results of this study, according to the highest mode of cohesive failure, Variolink II seems to have the strongest bond with IPS-Empress2 ceramics.
Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick
2018-04-01
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Kadota, Michio; Tanaka, Shuji
2016-07-01
There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.
Chowdhury, Sugata; Simpson, Jeffrey; Einstein, T. L.; Walker, Angela R. Hight
2D-materials with controllable optical, electronic and magnetic properties are desirable for novel nanodevices. Here we studied these properties for both pristine and hydrogenated TaSe2 (TaSe2-H) monolayer (ML) in the framework of DFT using the PAW method. We considered uniaxial and biaxial tensile strain, as well as shear strain along the basal planes in the range between 1% and 16%. Previous theoretical works (e.g.) considered only symmetrical biaxial tensile. Pristine ML is ferromagnetic for uniaxial tensile strain along ◯ or ŷ. For tensile strain in ŷ, the calculated magnetic moments of the Ta atoms are twice those for the same strain in ◯. Under pure shear strain (expansion along ŷ and compression along ◯), a pristine ML is ferromagnetic, but becomes non-magnetic when the strain directions are interchanged. Due to carrier-mediated double-exchange, the pristine ML is ferromagnetic when the Se-Ta-Se bond angle is < 82° and the ML thickness is < 3.25Å. We find that all Raman-active phonon modes show obvious red-shifting due to bond elongation and the E2 modes degeneracy is lifted as strain increases. For a TaSe2-H ML, the same trends were observed. Results show the ability to tune the properties of 2D-materials.
Giant moving vortex mass in thick magnetic nanodots.
Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O
2015-09-10
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.
Extended theory of main ion and impurity rotation and bootstrap current in a shear layer
International Nuclear Information System (INIS)
Kim, Y.B.; Hinton, F.L.; St. John, H.; Taylor, T.S.; Wroblewski, D.
1993-11-01
In this paper, standard neoclassical theory has been extended into the shear layer. Main ion and impurity ion rotation velocity and bootstrap current within shear layer in H-mode are discussed. Inside the H-mode shear layer, standard neoclassical theory is not valid since the ion poloidal gyroradius becomes comparable to pressure gradient and electric field gradient scale length. To allow for arbitrary ratio of ρθi/L n and ρθi/L Er a new kinetic theory of main ion species within electric field shear layer has been developed with the assumption that ρθi/R o is still small. As a consequence, both impurity flows and bootstrap current have to be modified. We present modified expressions of impurity flows and bootstrap current are presented neglecting ion temperature gradient. Comparisons with DIII-D measurements are also discussed
Shear behavior of concrete beams externally prestressed with Parafil ropes
Directory of Open Access Journals (Sweden)
A.H. Ghallab
2013-03-01
Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.
Directory of Open Access Journals (Sweden)
Kaishi Wang
2018-03-01
Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K
2018-03-27
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
International Nuclear Information System (INIS)
Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.
2011-01-01
Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.
High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques
DEFF Research Database (Denmark)
Tuenter, A.; Selwaness, M.; Arias Lorza, A.
2016-01-01
estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...
Directory of Open Access Journals (Sweden)
Yoshiaki Zaizen
2016-05-01
Full Text Available The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.
Energy Technology Data Exchange (ETDEWEB)
Zaizen, Yoshiaki, E-mail: y-zaizen@jfe-steel.co.jp; Omura, Takeshi; Senda, Kunihiro [Steel Research Laboratory, JFE Steel Corporation, Kawasakidori 1,Mizushima, Kurashiki,712-8511 (Japan); Fukumura, Masaru [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, Kanagawa 210-0855 (Japan); Toda, Hiroaki [Steel Business Planning Dept, JFE Steel Corporation, Tokyo 100-0011 (Japan)
2016-05-15
The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.
Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.
2017-10-01
Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.
Mezheritsky, Alex A; Mezheritsky, Alex V
2007-12-01
A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh
Shape oscillations of elastic particles in shear flow.
Subramaniam, Dhananjay Radhakrishnan; Gee, David J
2016-09-01
Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.
An evaluation of shear bond strength of self-etch adhesive on pre-etched enamel: an in vitro study.
Rao, Bhadra; Reddy, Satti Narayana; Mujeeb, Abdul; Mehta, Kanchan; Saritha, G
2013-11-01
To determine the shear bond strength of self-etch adhesive G-bond on pre-etched enamel. Thirty caries free human mandibular premolars extracted for orthodontic purpose were used for the study. Occlusal surfaces of all the teeth were flattened with diamond bur and a silicon carbide paper was used for surface smoothening. The thirty samples were randomly grouped into three groups. Three different etch systems were used for the composite build up: group 1 (G-bond self-etch adhesive system), group 2 (G-bond) and group 3 (Adper single bond). Light cured was applied for 10 seconds with a LED unit for composite buildup on the occlusal surface of each tooth with 8 millimeters (mm) in diameter and 3 mm in thickness. The specimens in each group were tested in shear mode using a knife-edge testing apparatus in a universal testing machine across head speed of 1 mm/ minute. Shear bond strength values in Mpa were calculated from the peak load at failure divided by the specimen surface area. The mean shear bond strength of all the groups were calculated and statistical analysis was carried out using one-way Analysis of Variance (ANOVA). The mean bond strength of group 1 is 15.5 Mpa, group 2 is 19.5 Mpa and group 3 is 20.1 Mpa. Statistical analysis was carried out between the groups using one-way ANOVA. Group 1 showed statistically significant lower bond strength when compared to groups 2 and 3. No statistical significant difference between groups 2 and 3 (p adhesive G-bond showed increase in shear bond strength on pre-etched enamel.
Shear optimization experiments with current profile control on JET
International Nuclear Information System (INIS)
1997-01-01
A record performance on JET has been obtained with shear optimization scenarios. A neutron yield of 5.6x10 16 s -1 in deuterium discharges, and a global energy confinement improvement above the ITER-89 L-mode scaling with H ≤ 2.5 in L-mode and H ≤ 3 in H-mode have been achieved. The tailoring of plasma current, density and heating power waveforms and current profile control with lower hybrid current drive and ICRF phasing have been essential. Internal energy, particle and momentum transport barriers develop spontaneously upon heating above a threshold power of about 15 MW with neutral beams and ICRH into a low-density target plasma, with a wide central region of slightly negative or flat magnetic shear with q > 1 everywhere. An additional H-mode transition can also raise the pressure in the region between internal and edge transport barriers. The ion heat conductivity falls to the neoclassical level in the improved core confinement region. Pressure profile control through power deposition feedback control makes it possible to work close to the marginal stability boundary for pressure-driven MHD modes. First experiments in deuterium/tritium plasmas, with up to 75% tritium target concentration, have established internal transport barriers already with heating powers at the lowest threshold of pure deuterium plasmas, resulting in a fusion power output of P fusion = 2 MW. (author)
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Compressibility effects in the shear layer over a rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Energy Technology Data Exchange (ETDEWEB)
Jo, C. M.; Kwon, Y. D.; Kwon, S. B. [Kyungpook National University, Daegu (Korea, Republic of); Kim, G. Y. [POSCO Technical Research laboratories, Gumgo-dong (Korea, Republic of)
2011-11-15
It is known that the distributions of the impinging pressure gradient and the shear stress at the strip surface play a decisive key role in the decision of the coating thickness in hot-dip galvanizing. So, to predict the exact coating thickness, it is essential that the distributions of the impinging wall jet pressure and the shear stress acting between the liquid film and jet stream are measured (or calculated) exactly for each specific coating condition. So far, to obtain the impinging wall jet pressure, it was assumed that the jet issuing from an air-knife is similar to the Hiemenz plane stagnation flow, and the wall shear stress could be predicted by an equation using the assumption of a non-negative Gaussian profile in impinging wall jet pressure in general, so that it cannot be reliable for some impinging wall jet regions and nozzle systems intrinsically. Nevertheless, one cannot find a suitable method to cope with the difficulties in measuring/calculating of the shear stress and the impinging wall jet pressure. Such a difficulty which will cause an inaccuracy in the coating thickness prediction. With these connections, in the present study, we suggest a new method named as a two-step calculation method to calculate the final coating thickness, which consists of the air jet analysis and coating thickness calculation. And, from the comparison of the results one may confirm the validation of the new suggested method.
Goodarzi, Mohammad Saeed; Hosseini-Toudeshky, Hossein
2017-11-01
In this paper a formulation of a viscoelastic-damage interface model with friction in mode-II is presented. The cohesive constitutive law contains elastic and damage regimes. It has been assumed that the shear stress in the elastic regime follows the viscoelastic properties of the matrix material. The three element Voigt model has been used for the formulation of relaxation modulus of the material. Damage evolution proceeds according to the bilinear cohesive constitutive law combined with friction stress consideration. Combination of damage and friction is based on the presumption that the damaged area, related to an integration point, can be dismembered into the un-cracked area with the cohesive damage and cracked area with friction. Samples of a one element model have been presented to see the effect of parameters on the cohesive constitutive law. A comparison between the predicted results with available results of end-notched flexure specimens in the literature is also presented to verify the model. Transverse crack tension specimens are also simulated for different applied displacement velocities.
An analytic interface dynamo over a shear layer of finite depth
Petrovay, K.; Kerekes, A.; Erdélyi, R.
2010-01-01
Parker's analytic Cartesian interface dynamo is generalized to the case of a shear layer of finite thickness and low resistivity ("tachocline"), bounded by a perfect conductor ("radiative zone") on the one side, and by a highly diffusive medium ("convective zone") supporting an $\\alpha$-effect on the other side. In the limit of high diffusivity contrast between the shear layer and the diffusive medium, thought to be relevant for the Sun, a pair of exact dispersion relations for the growth rat...
Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting
Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu
2016-05-01
Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.
Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.
Wang, P M; Lai-Fook, S J
1997-01-01
We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.
Interchange and Infernal Fishbone Modes in Plasmas with Tangentially Injected Beams
International Nuclear Information System (INIS)
Kolesnichenko; Ya.I.; Marchenko; V.S.; White; R.B.
2006-01-01
New energetic particle mode instabilities of fishbone type are predicted. The considered instabilities are driven by the circulating energetic ions. They can arise in plasmas of tokamaks and spherical tori with weak magnetic shear in the wide core region and strong shear at the periphery, provided that the central safety factor is close to the ratio m/n, where m and n are the poloidal mode number and toroidal mode number, respectively. The instability with m = n = 1 has interchange-like spatial structure, whereas the structure of instabilities with m/n > 1 is similar to that of the infernal MHD mode (except for the region in vicinity of the local Alfven resonance)
Shear wave velocity structure of northern and North-Eastern Ethiopia
International Nuclear Information System (INIS)
Kebede, F.; Mammo, T.; Panza, G.F.; Vuan, A.; Costa, G.
1995-10-01
The non-linear inversion technique known as hedgehog is utilized to define the average crustal structure of North and North-Eastern Ethiopia. To accomplish the task a two dimensional frequency-time analysis is performed to obtain Rayleigh wave group velocity dispersion curves. Six earthquakes recorded by the broad-band digital seismograph installed at the Geophysical Observatory of Addis Ababa University are utilized. The crustal structure between the Gulf of Tadjura (western Gulf of Aden) and Addis Ababa crossing southern Afar (path I) can be approximated by a total thickness of about 22 km with average S-wave velocity in the range 2.3 - 3.9 km/s. The crust-mantle transition is poorly developed at greater depths and the shear wave velocity ranges from 4.0 km/s to 4.3 km/s. If the effect of the plateau part is taken into account the average total crustal thickness is found to be less than 18 km and the average S-wave velocity varies in the range 2.4 - 3.9 km/s. The low shear wave velocity under the Afar crust is consistent with the result of other geophysical studies. For path II, which passes through the border of the Western Ethiopian plateau, the average crustal structure is found to be approximated by a thickness of about 40 km and average S-wave velocity between 3.0 km/s and 3.9 km/s. The crust overlies a lithospheric mantle with a shear wave velocity in the range 4.1-4.4 km/s. (author). 37 refs, 11 figs, 4 tabs
Nonlinear surface elastic modes in crystals
Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.
1990-03-01
The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.
Mixed-Mode Crack Growth in Wood
Directory of Open Access Journals (Sweden)
Octavian POP
2012-09-01
Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.
Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability
Masood, W.; Saleem, H.; Saleem
2013-12-01
It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.
Beta-Suppression of Alfven Cascade Modes in the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Fredrickson, E.D.; N.A. Crocker; N.N. Gorelenkov; W.W. Heidbrink; S. Kubota; F.M. Levinton; H. Yuh; J.E. Menard; Bell, R.E.
2007-01-01
The coupling of Alfven Cascade (AC) modes or reversed-shear Alfven eigenmodes (rsAE) to Geodesic Acoustic Modes (GAM) implies that the range of the AC frequency sweep is reduced as the electron β is increased. This model provides an explanation for the otherwise surprising absence of AC modes in reverse shear NSTX plasmas, given the rich spectrum of beam-driven instabilities typically seen in NSTX. In experiments done at very low β to investigate this prediction, AC modes were seen, and as the β e was increased from shot to shot, the range of the AC frequency sweep was reduced, in agreement with this theoretical prediction.
A comprehensive spectral theory of zonal-mode dynamics in trapped electron mode turbulence
International Nuclear Information System (INIS)
Terry, P.W.; Gatto, R.; Baver, D.A.; Fernandez, E.
2005-01-01
A comprehensive, self-consistent theory for spectral dynamics in trapped electron mode (TEM) turbulence offers critical new understanding and insights into zonal-mode physics. This theory shows that 1) zonal mode structure, anisotropy, excitation, and temporal behavior arise at and from the interface of nonlinear advection and linear wave properties; 2) waves induce a marked spectral energy-transfer anisotropy that preferentially drives zonal modes relative to non zonal modes; 3) triplet correlations involving density (as opposed to those involving only flow) mediate the dominant energy transfer at long wavelengths; 4) energy transfer becomes inverse in the presence of wave anisotropy, where otherwise it is forward; 5) zonal-mode excitation is accompanied by excitation of a spectrum of damped eigenmodes, making zonal modes nonlinearly damped; and 6) the combination of anisotropic transfer to zonal modes and their nonlinear damping make this the dominant saturation mechanism for TEM turbulence. This accounts for the reduction of turbulence level by zonal modes, not zonal-flow ExB shearing. (author)
International Nuclear Information System (INIS)
Fedorczak, N; Manz, P; Chakraborty Thakur, S; Xu, M; Tynan, G R
2013-01-01
The consequences of vorticity conservation on the spatio-temporal interaction of a E × B zonal shear with a generic pattern of plasma potential modes are investigated in a magnetized plasma environment. Eddies organized on a chain along the zonal direction are locally depleted, resulting in what appears to be a radial decorrelation by the shear flow in the absence of dissipation. The eddy depletion occurs due to a transfer of enstrophy from the chain to the shear flow during the progressive growth in the chain anisotropy. The rate of zonal shear acceleration is derived analytically and its expression is validated by numerical simulations. The rate is proportional to the chain amplitude in the weak shear regime and to the shearing rate in the strong shear regime. Basic properties of the model are validated with fast visible imaging data collected on a magnetized plasma column experiment. A characteristic vorticity flux across the edge shear layer of tokamak plasmas is associated with the model predictions. The dependence of the interaction rate with turbulence amplitude and shearing rate could be an important ingredient of the low to high confinement mode transition. (paper)
Directory of Open Access Journals (Sweden)
Jean Didier Koffi Kouassi
2014-05-01
Full Text Available The objective of this work was to study the effects of wheat flour dough’s viscoelastic level by adding glucose oxidase (Gox on its rheological properties at dynamic shear strain mode to predict the final product quality. Dough does display a linear viscoelastic domain. Glucose oxidase (Gox was added to dough in order to enhance its viscoelasticity and to take into account the possible effects of this viscoelasticity on the results. Whatever the types of dough strain used G’ increased, tan δ decreased and led to less sticky dough. Wheat flour dough, an increase in G’ with extension may be associated to a strain-hardening phenomenon but the role of dough viscoelasticity is discussed.
Sheared-flow induced confinement transition in a linear magnetized plasma
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
Sheared-flow induced confinement transition in a linear magnetized plasma
International Nuclear Information System (INIS)
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn/n∼eδφ/kT e ∼0.5) are observed at the plasma edge, accompanied by a large density gradient (L n =∇lnn -1 ∼2cm) and shearing rate (γ∼300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (V bias ) on the obstacle and the axial magnetic field (B z ) strength. In cases with low V bias and large B z , improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by ExB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller B z , large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2017-10-01
To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.
Low-frequency modes with high toroidal mode numbers. A general formulation
International Nuclear Information System (INIS)
Pegoraro, F.; Schep, T.J.
1979-09-01
Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)
Biomolecule detection using a silicon nanoribbon: accumulation mode versus inversion mode
International Nuclear Information System (INIS)
Elfstroem, Niklas; Linnros, Jan
2008-01-01
Silicon nanoribbons were fabricated using standard optical lithography from silicon on insulator material with top silicon layer thicknesses of 100, 60 and 45 nm. Electrically these work as Schottky-barrier field-effect transistors and, depending on the substrate voltage, electron or hole injection is possible. The current through the nanoribbon is extremely sensitive to charge changes at the oxidized top surface and can be used for biomolecule detection in a liquid. We show that for detection of streptavidin molecules the response is larger in the accumulation mode than in the inversion mode, although not leading to higher detection sensitivity due to increased noise. The effect is attributed to the location in depth of the conducting channel, which for holes is closer to the screened surface charges of the biomolecules. Furthermore, the response increases for decreasing silicon thickness in both the accumulation mode and the inversion mode. The results are verified qualitatively and quantitatively through a two-dimensional simulation model on a cross section along the nanoribbon device
Assisted crack tip flipping under Mode I thin sheet tearing
DEFF Research Database (Denmark)
Felter, Christian Lotz; Nielsen, Kim Lau
2017-01-01
Crack tip flipping, where the fracture surface alternates from side to side in roughly 45° shear bands, seems to be an overlooked propagation mode in Mode I thin sheet tearing. In fact, observations of crack tip flipping is rarely found in the literature. Unlike the already established modes...
Huan, Qiang; Miao, Hongchen; Li, Faxin
2018-02-01
Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.
Hydrodynamical fluctuations in smooth shear flows
International Nuclear Information System (INIS)
Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.
1999-11-01
Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic
Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows
International Nuclear Information System (INIS)
Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie
2011-01-01
A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS
International Nuclear Information System (INIS)
Hilmy, S.I.; White, R.N.; Gergely, P.
1982-06-01
This report presents experimental and analytical results on internal pressurization effects and seismic shear effects in a concrete containment vessel that is cracked by tension in one direction only. The experimental program, which was restricted to 6 in. thick flat specimens with two-way reinforcement, included establishment of (a) extensional stiffness for uniaxially tensioned specimens stressed to 0.6fy, and (b) shear strength and stiffness of these cracked specimens with tension levels ranging from 0 to 0.9fy; values were about 10 to 15 percent higher than in similar biaxially tensioned specimens. Eleven (11) specimens were tested (6 in monotonic shear and 5 in reversing cyclic shear)
Fatigue behavior of thick composite single lap joints
Energy Technology Data Exchange (ETDEWEB)
Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)
2012-07-01
In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)
Energy Technology Data Exchange (ETDEWEB)
Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)
1998-04-01
Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.
International Nuclear Information System (INIS)
Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.
1998-04-01
Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV
Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities
Energy Technology Data Exchange (ETDEWEB)
Du, Han; Zhang, Xingwang; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Zhao, Yunshan [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)
2016-04-25
We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.
On the stability of shear-Alfven vortices
International Nuclear Information System (INIS)
Jovanovic, D.; Horton, W.
1993-08-01
Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex
The effect of shear force on ink transfer in gravure offset printing
International Nuclear Information System (INIS)
Lee, Taik-Min; Lee, Seung-Hyun; Noh, Jae-Ho; Kim, Dong-Soo; Chun, Sangki
2010-01-01
This paper asserts that shear force plays an important role in the printing mechanism of gravure offset line printing. To that end, a theoretical printing model showing shear force dependence on the printing angle is proposed. The decrement of the internal angle between the printing direction and the pattern-line direction increases shear force, thereby enhancing the amount of transferred ink in the off stage. A printing experiment using pattern-line widths of 80 µm and 20 µm shows the angle dependence of the line width, thickness and amount of transferred ink, reflecting the effect of shear force. The effect of the internal angle on cross-sectional differences in lines with a width of 20 µm and with angle variation is greater than that in lines with a width of 80 µm, which corresponds with the theoretical prediction that shear force has greater influence on a narrower line. The strong correlation between the experimental data and the theoretical model supports the validation of the theoretical model
Characteristics of internal transport barriers from the JET optimised shear database
International Nuclear Information System (INIS)
Rochard, F.; Litaudon, X.; Soeldner, F.
2000-02-01
The general features of the Internal Transport Barriers (ITBs) obtained in the JET 'Optimised Shear' regime are deduced from the analyses of a large database of discharges including the experiments performed with a mixture of Deuterium-Tritium (D-T) ions. The coupled and complex spatio-temporal dynamics of the ITBs are studied from the radial profiles measurements of the thermal ion and electron temperatures. The spatial locations of the ITBs inside the plasma column are deduced from the radial derivatives of the plasmas profiles. In particular, our analyses show that the radial positions of the ITB follow the same evolution for both the electron and ion temperature profiles. Among the JET 'Optimised Shear' database, we propose to distinguish two categories of discharges depending on the edge conditions: the ITBs are triggered either with an L-mode edge or simultaneously with an edge transport barrier (H-mode). The characteristics of the ITBs and plasma performances of these two categories are compared. Experimental conditions to successfully combine the edge and core transport barriers are given. In particular, emphasis is given on the description and analyses of the 'Optimised Shear' discharges which combine an ITB with an ELMy edge since this operating mode opens the route to high performance regimes which could be extrapolated towards steady-state conditions. (author)
Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn
2018-01-01
To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.
Properties of ballooning modes in the Heliotron configurations
International Nuclear Information System (INIS)
Nakajima, N.; Hudson, S.R.; Hegna, C.C.
2005-01-01
The stability of ballooning modes is influenced by the local and global magnetic shear and local and global magnetic curvature so significantly that it is fairly difficult to get those general properties in the three dimensional configurations with strong flexibility due to the external coil system. In the case of the planar axis heliotron configurations allowing a large Shafranov shift, like LHD, properties of the high-mode-number ballooning modes have been intensively investigated. It has been analytically shown that the local magnetic shear comes to disappear in the stellarator-like global magnetic shear region, as the Shafranov shift becomes large. Based on this mechanism and the characteristics of the local and global magnetic curvature, it is numerically shown that the destabilized ballooning modes have strong three-dimensional properties (both poloidal and toroidal mode couplings) in the Mercier stable region, and that those are fairly similar to ballooning modes in the axisymmetric system in the Mercier unstable region. As is well known, however, no quantization condition is applicable to the ballooning modes in the three-dimensional system without symmetry, and so the results of the high-mode-number ballooning modes in the covering space had to be confirmed in the real space. Such a confirmation has been done in the Mercier stable region and also in the Mercier unstable region by using three dimensional linearized ideal MHD stability code cas3d. Confirming the relation between high-mode-number ballooning analyses by the global mode analyses, the method of the equilibrium profile variations has been developed in the tree dimensional system, giving dt/dψ - dP/dψ stability diagram corresponding to the s - α diagram in tokamaks. This method of profile variation are very powerful to investigate the second stability of high-mode-number ballooning modes and has been more developed. Recently it has been applied to the plasma in the inward-shifted LHD
A study of tearing modes via electron cyclotron emission from tokamak plasmas
International Nuclear Information System (INIS)
Ren, C.
1998-07-01
This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm's law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented
A study of tearing modes via electron cyclotron emission from tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Ren, Chuang [Univ. of Wisconsin, Madison, WI (United States)
1998-07-01
This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm`s law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented.
Displacement-length scaling of brittle faults in ductile shear.
Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius
2011-11-01
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.
Displacement–length scaling of brittle faults in ductile shear
Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius
2011-01-01
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996
Effect of ozone gas on the shear bond strength to enamel.
Pires, Patrícia Teixeira; Ferreira, João Cardoso; Oliveira, Sofia Arantes; Silva, Mário Jorge; Melo, Paulo Ribeiro
2013-01-01
Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37°C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Mean bond strength values and failure modes were as follows: G1--26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2--27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3--15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4--13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive). Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.
A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.
Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki
2016-08-01
We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.
Atomic mechanism of shear localization during indentation of a nanostructured metal
International Nuclear Information System (INIS)
Sansoz, F.; Dupont, V.
2007-01-01
Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning
Directory of Open Access Journals (Sweden)
Yurisman
2010-11-01
Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test
Shear Elasticity and Shear Viscosity Imaging in Soft Tissue
Yang, Yiqun
In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all
Thermal electron transport in regimes with low and negative magnetic shear in Tore Supra
International Nuclear Information System (INIS)
Voitsekhovitch, I.; Litaudon, X.; Moreau, D.; Aniel, T.; Becoulet, A.; Erba, M.; Joffrin, E.; Kazarian-Vibert, F.; Peysson, Y.
1997-01-01
The magnetic shear effect on thermal electron transport is studied in a large variety of non-inductive plasmas in Tore Supra. An improved confinement in the region of low and negative shear was observed and quantified with an exponential dependence on the magnetic shear (Litaudon, et al., Fusion Energy 1996 (Proc. 16th Int. Conf. Montreal, 1996), Vol. 1, IAEA, Vienna (1997) 669). This is interpreted as a consequence of a decoupling of the global modes (Romanelli and Zonca, Phys. Fluids B 5 (1993) 4081) that are thought to be responsible for anomalous transport. This dependence is proposed in order to complete the Bohm-like L mode local electron thermal diffusivity so as to describe the transition from Bohm-like to gyroBohm transport in the plasma core. The good agreement between the predictive simulations of the different Tore Supra regimes (hot core lower hybrid enhanced performance, reversed shear plasmas and combined lower hybrid current drive and fast wave electron heating) and experimental data provides a basis for extrapolation of this magnetic shear dependence in the local transport coefficients to future machines. As an example, a scenario for non-inductive current profile optimization and control in ITER is presented. (author)
Collisionless tearing mode reconnection at the dayside magnetopause of the earth's magnetosphere
International Nuclear Information System (INIS)
Quest, K.B.
1982-01-01
The purpose of this thesis was to determine if the collisionless tearing mode, a plasma instability, is a viable mechanism for interconnecting field lines at the dayside magnetopause. More generally, it was wished to test theoretically the assertion that collisionless tearing is a probable first step in cosmical reconnection. The procedure was to model the magnetopause as a local one-dimensional Vlasov equilibrium, and then calculate the linear and nonlinear stability properties of tearing and tearing-like oscillations. Quantitative estimates of the range of plasma parameter space over which significant growth occurs were obtained. Assuming that significant tearing mode growth implies significant reconnection, conditions were determined for which tearing will be important to dayside reconnection. Linearly it was found that the growth rate is relatively insensitive to the temperature of the species, but depends sensitively on (1) the thickness of the magnetopause current, (2) the number density at the location of the singular layer, and (3) the magnitude of the magnetic shear. For significant linear growth the magnetopause half-sheet thickness was required to be on the order of or less than a thermal ion gyroradius, the number density was required to be no more than 100 cm - 3 , and the magnetosheath field was required to be locally antialigned with the magnetospheric field. If the above conditions are met, which are stringent but not impossible, the mode will linearly amplify. Another topic examined is the question of the structure of the tearing eigenmodes at the dayside magnetopause. By considering finite transit time effects on electron Landau resonance it was concluded that magnetopause tearing turbulence probably occurs in spatially bounded wave packets
International Nuclear Information System (INIS)
Astill, M.; Sunderland, A.; Waine, M.G.
1980-01-01
A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)
Crack Tip Flipping under Mode I Tearing: Investigated by X-Ray Tomography
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Gundlach, Carsten
2017-01-01
The fracture surface morphology that results from mode I tearing of ductile plate metals depends heavily on both the elastic-plastic material properties and the microstructure. Severe tunneling of the advancing crack tip (resulting in cup-cup, or bath-tub like fracture surfaces) can take place...... in a range of materials, often of low strength, while tearing of high strength metals typically progress by the shear band failure mechanism (slanting). In reality, however, most fracture surfaces display a mixture of morphologies. For example, slant crack propagation can be accompanied by large shear lips...... near the outer free plate surface or a complete shear band switch - seemingly distributed randomly on the fracture surface. The occasionally observed shear band switch of mode I slant cracks, related to ductile plate tearing, is far from random as the crack can flip systematically from one side...
Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.
Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping
2016-01-01
Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.
Shear strength of palm oil clinker concrete beams
International Nuclear Information System (INIS)
Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.
2013-01-01
Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1
Observations of intense velocity shear and associated electrostatic waves near an auroral arc
International Nuclear Information System (INIS)
Kelley, M.C.; Carlson, C.W.
1977-01-01
An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination
Crack Tip Flipping Under Mode I/III Tearing
DEFF Research Database (Denmark)
Felter, Christian Lotz; Specht Jensen, Lasse; Nielsen, Kim Lau
Crack tip flipping, where the fracture surface alternates from side to side in 45° shear bands, seems to be an overlooked propagation mode in Mode I sheet tearing often disregarded as “transitional” or tied to randomness in the material. In fact, such observations rarely make it to the literature...
Constitutive behaviour of mixed mode loaded adhesive layer
DEFF Research Database (Denmark)
Högberg, J.L.; Sørensen, Bent F.; Stigh, U.
2007-01-01
in the failure process zone. The constitutive behaviour of the adhesive layer is obtained by a so called inverse method and fitting an existing mixed mode cohesive model, which uses a coupled formulation to describe a mode dependent constitutive behaviour. The cohesive parameters are determined by optimizing......Mixed mode testing of adhesive layer is performed with the Mixed mode double Cantilever Bean? specimen. During the experiments, the specimens are loaded by transversal and/or shear forces; seven different mode mixities are tested. The J-integral is used to evaluate the energy dissipation...
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-05-01
To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, pmasses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.
Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G
2012-04-13
Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.
Dagan, Yuval; Ghoniem, Ahmed
2017-11-01
Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.
International Nuclear Information System (INIS)
Xu, Feng; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Sun, Litao; Ge, Binghui; Chen, Jing; Cui, Yiping; Nathan, Arokia; Xin, Linhuo L; Ma, Hongyu; Wu, Lijun; Zhu, Yimei
2016-01-01
Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ∼1.25 × 10 4 s −1 . The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs. (paper)
Deformation localization at the tips of shear fractures: An analytical approach
Misra, Santanu
2011-04-01
Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.
Saturated ideal modes in advanced tokamak regimes in MAST
International Nuclear Information System (INIS)
Chapman, I.T.; Hua, M.-D.; Pinches, S.D.; Akers, R.J.; Field, A.R.; Hastie, R.J.; Michael, C.A.; Graves, J.P.
2010-01-01
MAST plasmas with a safety factor above unity and a profile with either weakly reversed shear or broad low-shear regions, regularly exhibit long-lived saturated ideal magnetohydrodynamic (MHD) instabilities. The toroidal rotation is flattened in the presence of such perturbations and the fast ion losses are enhanced. These ideal modes, distinguished as such by the notable lack of islands or signs of reconnection, are driven unstable as the safety factor approaches unity. This could be of significance for advanced scenarios, or hybrid scenarios which aim to keep the safety factor just above rational surfaces associated with deleterious resistive MHD instabilities, especially in spherical tokamaks which are more susceptible to such ideal internal modes. The role of rotation, fast ions and ion diamagnetic effects in determining the marginal mode stability is discussed, as well as the role of instabilities with higher toroidal mode numbers as the safety factor evolves to lower values.
Construction-friendly ductile shear joints for precast concrete panels
DEFF Research Database (Denmark)
Sørensen, Jesper Harrild; Hoang, Linh Cao; Fischer, Gregor
2015-01-01
. The solution is tested in a push-off experimental setup and the influence of important geometric parameters of the keyed shear joint is investigated. The first peak load carrying capacity is assessed using plasticity models, and the failure modes are identified by the use of digital image correlation...
Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating
Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.
2016-01-01
Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435
Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, P.K.; Kono, M.; Poedts, S.
2001-01-01
Linear and nonlinear low-frequency modes in a magnetized electron plasma are studied, taking into account a proper description of the equilibrium plasma state that is inhomogeneous. Assuming a homogeneous magnetic field and sheared plasma flows, flute-like perturbations are studied in the presence of density and potential gradients. Linear analysis reveals the presence of a streaming instability and depicts conditions for global linear spiral mode. In the nonlinear domain, a tripolar vortex, which is driven and carried by the flow, is found. Also investigated are the consequences of a magnetic shear as well as nonuniformities along the magnetic field lines, which are shown to be responsible for the possible annulment of the magnetic shear effects. Streaming along the lines of the sheared magnetic field is also studied. A variety of nonlinear structures (viz. global multipolar vortices, local vortex chains, and tripolar vortices) is shown to be the consequence of the simultaneous action of the parallel and perpendicular flows
High performance experiments in JT-60U reversed shear discharges
International Nuclear Information System (INIS)
Fujita, T.; Kamada, Y.; Ishida, S.
2001-01-01
The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)
Advances towards QH-mode viability for ELM-stable operation in ITER
International Nuclear Information System (INIS)
Garofalo, A.M.; Burrell, K.H.; DeBoo, J.C.; Schaffer, M.J.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Lanctot, M.J.; Reimerdes, H.; McKee, G.R.; Schmitz, L.
2011-01-01
The application of static, non-axisymmetric, nonresonant magnetic fields (NRMFs) to high beta DIII-D plasmas has allowed sustained operation with a quiescent H-mode (QH-mode) edge and both toroidal rotation and neutral beam injected torque near zero. Previous studies have shown that QH-mode operation can be accessed only if sufficient radial shear in the plasma flow is produced near the plasma edge. In past experiments, this flow shear was produced using neutral beam injection (NBI) to provide toroidal torque. In recent experiments, this torque was nearly completely replaced by the torque from applied NRMFs. The application of the NRMFs does not degrade the global energy confinement of the plasma. Conversely, the experiments show that the energy confinement quality increases with lower plasma rotation. Furthermore, the NRMF torque increases plasma resilience to locked modes at low rotation. These results open a path towards QH-mode utilization as an edge-localized mode (ELM)-stable H-mode in the self-heated burning plasma scenario, where toroidal momentum input from NBI may be small or absent.
Fracture predictions for cracks exposed to superimposed normal and shear stresses
International Nuclear Information System (INIS)
Richard, H.A.
1985-01-01
The author developed a special device and a fracture mechanics specimen and proposed a procedure for determining the fracture toughness when Mixed Mode and Mode II stresses are applied. This device makes it possible to generate pure normal stresses, superimposed normal and shearing stresses as well as pure shearing stresses in the cross section of the crack in the specimen, as desired. The so-called CTS fracture mechanics specimen has an edge crack. The load is transferred statically determind from the device to the specimen by means of six studs altogether. The experiments described, which were carried out with specimens made of the brittle materials PMMA (Plexiglas) and Araldit B, clearly show that it is possible to evaluate the validity of the individual fracture hypotheses by suitable experiments. It is also found that the fracture behaviour of different materials varies considerably both in quality and quantity. In conclusion, a practice-oriented fracture criterion is indicated which enables a practice-conforming evaluation of Mixed-Mode crack problems, as is shown by way of examples. (orig./HP) [de
Directory of Open Access Journals (Sweden)
Marcos Franke Pinto
2010-06-01
.016mm tick. The aim of this study was to compare beef texture data provided by Warner-Bratzler standard shear blade, 1.016mm thick, with those provided by a thicker one, 3.05mm thick. After slaughtering, Longissimus dorsi muscle samples with similar contents of moisture, lipids and proteins were subjected to two different cooling temperatures,reaching different rates of temperature drop and hence different muscle contraction extents, which were confirmed by the determination of sarcomere length. Results indicated the superior sensibility of the Warner-Bratzler standard shear blade to detect variations in meat texture due to cooling velocity.
Lattice shear distortions in fluorite structure oxides
International Nuclear Information System (INIS)
Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.
1979-01-01
Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion
Multiresonance modes in sine–Gordon brane models
Energy Technology Data Exchange (ETDEWEB)
Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-540 Juazeiro do Norte-Ceará (Brazil); Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Dantas, D.M., E-mail: davi@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil)
2016-12-15
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.
Multiresonance modes in sine–Gordon brane models
International Nuclear Information System (INIS)
Cruz, W.T.; Maluf, R.V.; Dantas, D.M.; Almeida, C.A.S.
2016-01-01
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.
Laser-assisted shearing: new application for high-power diode lasers
Emonts, Michael; Brecher, Christian
2010-02-01
Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".
Directory of Open Access Journals (Sweden)
Pataki Imre
2011-01-01
Full Text Available Aim of this research was determination of mode of inheritance, gene effects components of genetic variance, combining abilities, average contribution of lines and testers and their interactions in expression of stem thickness in forage sorghum F1 generation. Method line x tester was applied. Material comprised of eight genetically divergent A-inbred lines of grain sorghum three R lines-testers of Sudan grass and twenty-four F1 hybrids obtained by crossing lines with testers. Among tested genotypes there were significant differences in mean values of stem thickness. Analysis of variance of combining abilities showed that there were highly significant differences for general combining abilities (GCA and specific combining abilities (SCA non-additive component of genetic variance (dominance and epistasis had greater portion in total genetic variance for stem thickness. During the first research year, interaction between inbred maternal line with testers had the largest contribution in expression of stem thickness of F1 hybrid at both locations, while in the second year at location Rimski Šančevi the largest contribution belongs to lines and at location Mačvanski Prnjavor the largest contribution belongs to testers. Assessment of combining abilities showed that these inbred lines of grain sorghum can be used as mothers: SS-1 646, SS-1 688 and S-8 682 in breeding forage sorghum for thicker stem. According to SCA, promising forage sorghum hybrids are S-8 682 x ST-R lin H and P-21 656 x C-198. This research can be of importance for developing new high-yielding forage sorghum hybrids.
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
Directory of Open Access Journals (Sweden)
Murat Kılıç
2016-06-01
Full Text Available Specimens taken from Pinus nigra Arnold were subject to surfacing techniques by being cut with a circular saw, planed with a thickness machine, and sanded with a calibrating sanding machine (with P80 grit sandpaper. First, their surface roughness values were measured; then, the specimens were processed in the machines in a radial and tangential process. Afterwards, the change in shear strength (adhesiveness resistance was analyzed as a result of bonding with various adhesive types (PVAc, PU and pressure applications (0.45 N/mm² or 0.9 N/mm². Approximately 600 specimens were prepared with the purpose of identifying the effect of variables on the bonding performance, and they were subjected to shear testing. The greatest shear strength achieved for both the tangential and radial surfaces in terms of cutting was observed in specimens processed in the thickness machine, on which polyvinyl acetate adhesive and 0.9 N/mm². pressure were applied. Specimens bonded with polyvinyl acetate adhesive displayed higher shear strength in general in comparison to those bonded with polyurethane for both tangential and radial surfaces.
Directory of Open Access Journals (Sweden)
F.L. Plavnik
2000-01-01
Full Text Available The aim of this study was to analyze the thickness of the intima-media complex (IMC using a noninvasive method. The carotid and femoral common arteries were evaluated by noninvasive B-mode ultrasound in 63 normotensive and in 52 hypertensive subjects and the thickness of the IMC was tested for correlation with blood pressure, cardiac structures and several clinical and biological parameters. The IMC was thicker in hypertensive than in normotensive subjects (0.67 ± 0.13 and 0.62 ± 0.16 vs 0.54 ± 0.09 and 0.52 ± 0.11 mm, respectively, P<0.0001. In normotensive patients, the simple linear regression showed significant correlations between IMC and age, body mass index and 24-h systolic blood pressure for both the carotid and femoral arteries. In hypertensives the carotid IMC was correlated with age and 24-h systolic blood pressure while femoral IMC was correlated only with 24-h diastolic blood pressure. Forward stepwise regression showed that age, body mass index and 24-h systolic blood pressure influenced the carotid IMC relationship (r2 = 0.39 in normotensives. On the other hand, the femoral IMC relationship was influenced by 24-h systolic blood pressure and age (r2 = 0.40. In hypertensives, age and 24-h systolic blood pressure were the most important determinants of carotid IMC (r2 = 0.37, while femoral IMC was influenced only by 24-h diastolic blood pressure (r2 = 0.10. There was an association between carotid IMC and echocardiographic findings in normotensives, while in hypertensives only the left posterior wall and interventricular septum were associated with femoral IMC. We conclude that age and blood pressure influence the intima-media thickness, while echocardiographic changes are associated with the IMC.
Linear stability of tearing modes
International Nuclear Information System (INIS)
Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.
1986-05-01
This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when Δ' is positive
Seismic trapped modes in the oroville and san andreas fault zones.
Li, Y G; Leary, P; Aki, K; Malin, P
1990-08-17
Three-component borehole seismic profiling of the recently active Oroville, California, normal fault and microearthquake event recording with a near-fault three-component borehole seismometer on the San Andreas fault at Parkfield, California, have shown numerous instances of pronounced dispersive wave trains following the shear wave arrivals. These wave trains are interpreted as fault zone-trapped seismic modes. Parkfield earthquakes exciting trapped modes have been located as deep as 10 kilometers, as shallow as 4 kilometers, and extend 12 kilometers along the fault on either side of the recording station. Selected Oroville and Parkfield wave forms are modeled as the fundamental and first higher trapped SH modes of a narrow low-velocity layer at the fault. Modeling results suggest that the Oroville fault zone is 18 meters wide at depth and has a shear wave velocity of 1 kilometer per second, whereas at Parkfield, the fault gouge is 100 to 150 meters wide and has a shear wave velocity of 1.1 to 1.8 kilometers per second. These low-velocity layers are probably the rupture planes on which earthquakes occur.
Strain rate effects on the mechanical properties and fracture mode of skeletal muscle
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Michael; Tovar, Nick; Yoo, Daniel [Biomaterials and Biomimetics, New York University College of Dentistry (United States); Sobieraj, Micheal [Orthopedic Surgery, Hospital for Joint Diseases (United States); Gupta, Nikhil [Mechanical and Aerospace Engineering, NYU-Poly (United States); Branski, Ryan C. [Dept of Otolaryngology, New York University School of Medicine (United States); Coelho, Paulo G., E-mail: pc92@nyu.edu [Biomaterials and Biomimetics, New York University College of Dentistry (United States)
2014-06-01
The present study aimed to characterize the mechanical response of beagle sartorius muscle fibers under strain rates that increase logarithmically (0.1 mm/min, 1 mm/min and 10 mm/min), and provide an analysis of the fracture patterns of these tissues via scanning electron microscopy (SEM). Muscle tissue from dogs' sartorius was excised and test specimens were sectioned with a lancet into sections with nominal length, width, and thickness of 7, 2.5 and 0.6 mm, respectively. Trimming of the tissue was done so that the loading would be parallel to the direction of the muscle fiber. Samples were immediately tested following excision and failures were observed under the SEM. No statistically significant difference was observed in strength between the 0.1 mm/min (2.560 ± 0.37 MPa) and the 1 mm/min (2.702 ± 0.55 MPa) groups. However, the 10 mm/min group (1.545 ± 0.50 MPa) had a statistically significant lower strength than both the 1 mm/min group and the 0.1 mm/min group with p < 0.01 in both cases. At the 0.1 mm/min rate the primary fracture mechanism was that of a shear mode failure of the endomysium with a significant relative motion between fibers. At 1 mm/min this continues to be the predominant failure mode. At the 10 mm/min strain rate there is a significant change in the fracture pattern relative to other strain rates, where little to no evidence of endomysial shear failure nor of significant motion between fibers was detected.
Vibration of Elastic Functionally Graded Thick Rings
Directory of Open Access Journals (Sweden)
Guang-Hui Xu
2017-01-01
Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.
New oscillation mode in a tokamak and its instability
International Nuclear Information System (INIS)
Ivanov, S.D.; Mazur, V.A.
1982-01-01
A new potential oscillation mode in a tokamak has been discovered. This mode properties are an original combination of properties of a drift wave and a mode on trapped ions. Its existence is equally due to trapped and low flight ions. The effect of fast flight ions is eliminated with the peculiarity of a poloidal mode structure - mean value of a disturbed potential along a force line equals zero. The mode is swung with trapped electron collisions and the magnetic field shear, ion collisions and bounce resonances affect stabilizingly
Duanmu, Yu; Zou, Lu; Wan, De-cheng
2017-12-01
This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.
Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity
Varé, Thomas; Nouar, Chérif; Métivier, Christel
2017-10-01
Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.
Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel
Directory of Open Access Journals (Sweden)
Aleksandr Sokolov
2018-03-01
Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.
Effect of ozone gas on the shear bond strength to enamel
Directory of Open Access Journals (Sweden)
Patrícia Teixeira Pires
2013-04-01
Full Text Available Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Objective: Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Material and Methods: Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15: Group G1 (Excite® with ozone and group G3 (AdheSE® with ozone were prepared with ozone gas from the HealOzone unit (Kavo® for 20 s prior to adhesion, and groups G2 (Excite® and G4 (AdheSE® were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37°C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Results: Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure; G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive; G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive. Conclusions: Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.
Asymmetric vibrations of thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Yachita, Takumi.
1988-01-01
An exact method using power series expansions is presented for solving asymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is demonstrated for thick shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The results by the present method are compared with those by the thin shell theory and the effects of the rotatory inertia and the shear deformation upon the natural frequencies are clarified. (author)
Liu, Peng; Sun, Jianning; Shen, Lidu
2016-10-01
The entrainment flux ratio A e and the inversion layer (IL) thickness are two key parameters in a mixed layer model. A e is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of A e is derived from the TKE budget in the firstorder model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness. The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized A e and IL thickness agree well with the LES outputs.
Energy Technology Data Exchange (ETDEWEB)
Fourment, C; Hoang, G T; Eriksson, L-G; Garbet, X; Litaudon, X; Tresset, G [EURATOM-CEA Association, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-lez-Durance (France)
2003-03-01
The role of the current density profile on drift wave stability is investigated using a linear electrostatic gyro-kinetic code. The growth rates are shown to have a linear dependence on the normalized temperature gradients above a certain threshold. A parametric study of the threshold shows a dramatic stabilizing effect of negative magnetic shear, especially for large scale instabilities. A set of handy formulae fitting the threshold as a function of the magnetic shear and the safety factor is proposed. Analysis of reversed magnetic shear discharges with internal transport barrier (ITB) in JET shows that ion ITBs can be triggered by the negative magnetic shear in the core of the plasma. Subsequently, the increase of the ExB shearing rate allows for the expansion of the ITB, despite the increase of the linear growth rates due to the temperature gradient peaking. In the case of the electron ITB obtained in the Tore Supra LHEP mode, the central increase of the confinement is associated with the stabilization of large scale trapped electron modes by the negative magnetic shear effect, whereas the steep electron temperature gradient destabilizes the small scale electron temperature gradient modes, which prevent the electron heat transport to reach neoclassical levels.
Alfven frequency modes and global Alfven eigenmodes
International Nuclear Information System (INIS)
Villard, L.; Vaclavik, J.
1996-07-01
The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.
Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes
Directory of Open Access Journals (Sweden)
A. Smirnov
2018-01-01
Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.
Signatures of mode conversion and kinetic Alfven waves at the magnetopause
International Nuclear Information System (INIS)
Johnson, Jay R.; Cheng, C. Z.
2000-01-01
It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations
Suppression of plasma turbulence during optimised shear configurations in JET
International Nuclear Information System (INIS)
Conway, G.D.; Borba, D.N.; Alper, B.
1999-08-01
Density turbulence suppression is observed in the internal transport barrier (ITB) region of JET discharges with optimised magnetic shear. The suppression occurs in two stages. First, low frequency turbulence is reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then when the ITB forms, high frequency turbulence is reduced locally within the steep pressure gradient region of the ITB, consistent with the effects of enhanced E x B poloidal shear. The turbulence suppression is correlated with reduced plasma transport and improved fusion performance. Much effort has been spent in recent years in developing alternative scenarios for operating tokamak fusion reactors. One particular scenario involves reversing or reducing the central magnetic shear to form an internal transport barrier (ITB). The result is reduced plasma core energy transport and enhanced fusion performance. It is believed that ITBs may be formed through a combination of E x B velocity shear and magnetic shear stabilisation of plasma turbulence and instabilities. In this Letter we present results from JET optimised shear discharges showing that turbulence suppression during ITB formation occurs in two stages. First low frequency turbulence is reduced across the plasma core, coinciding with a region of strong toroidal velocity shear; then high frequency turbulence is locally suppressed around the ITB region, consistent with enhanced pressure gradient driven E x B poloidal shear. The measurements were made using a system of X-mode reflectometers consisting of two, dual-channel toroidal correlation reflectometers at 75 GHz (covering plasma outboard edge) and 105 GHz (core and inboard edge), and a 92-96 GHz swept frequency radial correlation reflectometer (plasma core). Reflectometry is a powerful tool for measuring density fluctuations. The highly localised reflection of the microwave beam gives excellent spatial localisation. Measurements can be made
International Nuclear Information System (INIS)
Pan'ko, G.F.; Prisedskij, V.V.; Klimov, V.V.
1983-01-01
Anisotropic diffusional scattering of electrons on PbZrO 3 crystal in the temperature range of phase transition has been recorded. As a result of its analysis it has been established that in lead zirconate the rotational vibrational mode G 25 plays the role of soft mode. The experiment is carried out using PbZrO 3 monocrystals in translucent electron microscope EhM-200, operating in the regime of microdiffraction at accelerating voltage of 150 kV and beam current 50 μA; sample preparation is realized using the method of shearing and fragmentation
Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability
Energy Technology Data Exchange (ETDEWEB)
Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu [Astronomy Department, University of California, Berkeley, CA 94720 (United States)
2017-02-01
We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.
Study of a compact reversed shear Tokamak reactor
International Nuclear Information System (INIS)
Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.
1998-01-01
A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)
International Nuclear Information System (INIS)
Ernst, D.R.; Beer, M.; Batha, S.
2001-01-01
Turbulence suppression by radial electric field shear (E r ) is shown to be important in the enhanced confinement of TFTR supershot plasmas. Simulations of supershot ion temperature profiles are performed using an existing parameterization of transport due to toroidal ion temperature gradient modes, extended to include suppression by E r shear. New spectroscopic measurements of E r differ significantly from prior neoclassical estimates. Supershot temperature profiles appear to be consistent with a criterion describing near-complete turbulence suppression by intrinsically generated E r shear. Helium spoiling and xenon puffing experiments are simulated to illustrate the role of E r shear in the confinement changes observed. (author)
International Nuclear Information System (INIS)
Ernst, D.R.; Beer, M.; Batha, S.
1999-01-01
Turbulence suppression by radial electric field shear (E r ) is shown to be important in the enhanced confinement of TFTR supershot plasmas. Simulations of supershot ion temperature profiles are performed using an existing parameterization of transport due to toroidal ion temperature gradient modes, extended to include suppression by E r shear. New spectroscopic measurements of E r differ significantly from prior neoclassical estimates. Supershot temperature profiles appear to be consistent with a criterion describing near-complete turbulence suppression by intrinsically generated E r shear. Helium spoiling and xenon puffing experiments are simulated to illustrate the role of E r shear in the confinement changes observed. (author)
Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects
International Nuclear Information System (INIS)
Pankin, Alexei Y.; Kritz, Arnold H.
2011-01-01
Topics covered are: anomalous transport and E f- B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies
Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects
Energy Technology Data Exchange (ETDEWEB)
Pankin, Alexei Y.; Kritz, Arnold H.
2011-07-19
Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.
Energy Technology Data Exchange (ETDEWEB)
Ianculescu, Victor; Ciolovan, Laura Maria [Radiology Department, Gustave Roussy, Villejuif (France); Dunant, Ariane [Department of Statistics, Gustave Roussy, Villejuif (France); Vielh, Philippe [Department of Biopathology, Gustave Roussy, Villejuif (France); Mazouni, Chafika [Department of Surgery, Gustave Roussy, Villejuif (France); Delaloge, Suzette [Department of Oncology, Gustave Roussy, Villejuif (France); Dromain, Clarisse [Radiology Department, Gustave Roussy, Villejuif (France); Blidaru, Alexandru [Department of Surgery, Bucharest Institute of Oncology, Bucharest (Romania); Balleyguier, Corinne, E-mail: corinne.balleyguier@gustaveroussy.fr [Radiology Department, Gustave Roussy, Villejuif (France); UMR 8081, IR4M, Paris-Sud University, 91405 Orsay (France)
2014-05-15
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies.
International Nuclear Information System (INIS)
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-01-01
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies
Directory of Open Access Journals (Sweden)
Fernando Cortés
2015-01-01
Full Text Available This paper presents an analysis of the dynamic behaviour of constrained layer damping (CLD beams with thick viscoelastic layer. A homogenised model for the flexural stiffness is formulated using Reddy-Bickford’s quadratic shear in each layer, and it is compared with Ross-Kerwin-Ungar (RKU classical model, which considers a uniform shear deformation for the viscoelastic core. In order to analyse the efficiency of both models, a numerical application is accomplished and the provided results are compared with those of a 2D model using finite elements, which considers extensional and shear stress and longitudinal, transverse, and rotational inertias. The intermediate viscoelastic material is characterised by a fractional derivative model, with a frequency dependent complex modulus. Eigenvalues and eigenvectors are obtained from an iterative method avoiding the computational problems derived from the frequency dependence of the stiffness matrices. Also, frequency response functions are calculated. The results show that the new model provides better accuracy than the RKU one as the thickness of the core layer increases. In conclusion, a new model has been developed, being able to reproduce the mechanical behaviour of thick CLD beams, reducing storage needs and computational time compared with a 2D model, and improving the results from the RKU model.
Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won
2013-10-23
Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.
Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves
2017-11-01
We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.
Pollard, Thomas B
Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity
Theory of dissipative drift instabilities in sheared magnetic fields
International Nuclear Information System (INIS)
Chen, L.; Guzdar, P.N.; Hsu, J.Y.; Kaw, P.K.; Oberman, C.; White, R.
1978-07-01
It is found that in the slab approximation, where usual shear damping is operative, resistivity contributes to an enhancement of this damping and the enhancement factor increases with the electron-ion collision frequency ν/sub ei/. Thus no unstable eigenmodes result. If the shear damping is nullified, either by introducing a strong spatial variation of the density gradient, or by working in toroidal geometry with strong toroidal coupling effects, then unstable eigenmodes with growth rates increasing with ν/sub ei/ are recovered. A perturbation calculation shows that retention of electron temperature fluctuations associated with the mode and inclusion of temperature gradients does not alter these conclusions. Extensive numerical calculations and relation to published experimental results are also presented
X-ray Radiography Measurements of Shear Coaxial Rocket Injectors
2013-05-07
Shear coaxial jets can be found in a number of combustion devices – Turbofan engine exhaust , air blast furnaces, and liquid rocket engines ...water and gaseous nitro-gen as propellant simulants at atmospheric backpressure , the effect of momentum flux ratio and mass flux ratio, are...the effect of momentum flux ratio, mass flux ratio and post thickness on the liquid mass distribution – Use quantitative centerline profiles to
A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning
International Nuclear Information System (INIS)
Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun
2014-01-01
An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time
Momentum-energy transport from turbulence driven by parallel flow shear
International Nuclear Information System (INIS)
Dong, J.Q.; Horton, W.; Bengtson, R.D.; Li, G.X.
1994-04-01
The low frequency E x B turbulence driven by the shear in the mass flow velocity parallel to the magnetic field is studied using the fluid theory in a slab configuration with magnetic shear. Ion temperature gradient effects are taken into account. The eigenfunctions of the linear instability are asymmetric about the mode rational surfaces. Quasilinear Reynolds stress induced by such asymmetric fluctuations produces momentum and energy transport across the magnetic field. Analytic formulas for the parallel and perpendicular Reynolds stress, viscosity and energy transport coefficients are given. Experimental observations of the parallel and poloidal plasma flows on TEXT-U are presented and compared with the theoretical models
Directory of Open Access Journals (Sweden)
Nur Mustakiza Zakaria
2014-01-01
Full Text Available Enhanced resonance search (ERS is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner. This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.
Numerical limit analysis of keyed shear joints in concrete structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2016-01-01
This paper concerns the shear capacity of keyed joints, which are transversely reinforced with overlapping U-bar loops. It is known from experimental studies that the discontinuity of the transverse reinforcement affects the capacity as well as the failure mode; however, to the best knowledge...... theorem and uses the modified Mohr-Coulomb yield criterion, which is formulated for second-order cone programming. The model provides a statically admissible stress field as well as the failure mode. Twenty-four different test specimens are modelled and the calculations are compared to the experimental...
International Nuclear Information System (INIS)
Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah
2009-01-01
Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
International Nuclear Information System (INIS)
Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.
1994-01-01
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles
Drift-kinetic Alfven modes in high performance tokamaks
International Nuclear Information System (INIS)
Jaun, A.; Fasoli, A.F.; Testa, D.; Vaclavik, J.; Villard, L.
2001-01-01
The stability of fast-particle driven Alfven eigenmodes is modeled in high performance tokamaks, successively with a conventional shear, an optimized shear and a tight aspect ratio plasma. A large bulk pressure yields global kinetic Alfven eigenmodes that are stabilized by mode conversion in the presence of a divertor. This suggests how conventional reactor scenarii could withstand significant pressure gradients from the fusion products. A large safety factor in the core q 0 >2.5 in deeply shear reversed configurations and a relatively large bulk ion Larmor radius in a low magnetic field can trigger global drift-kinetic Alfven eigenmodes that are unstable in high performance JET, NSTX and ITER plasmas. (author)
A de Sitter tachyon thick braneworld
Energy Technology Data Exchange (ETDEWEB)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aha@fis.unam.mx, E-mail: malagon@ifm.umich.mx, E-mail: rigel@ifm.umich.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)
2013-02-01
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.
[Assessment of plantar fasciitis using shear wave elastography].
Zhang, Lining; Wan, Wenbo; Zhang, Lihai; Xiao, Hongyu; Luo, Yukun; Fei, Xiang; Zheng, Zhixin; Tang, Peifu
2014-02-01
To assess the stiffness and thickness of the plantar fascia using shear wave elastography (SWE) in healthy volunteers of different ages and in patients with plantar fasciitis. The bilateral feet of 30 healthy volunteers and 23 patients with plantar fasciitis were examined with SWE. The plantar fascia thickness and elasticity modulus value were measured at the insertion of the calcaneus and at 1 cm from the insertion. The elderly volunteers had a significantly greater plantar fascia thickness measured using conventional ultrasound (P=0.005) and a significantly lower elasticity modulus value than the young volunteers (P=0.000). The patients with fasciitis had a significantly greater plantar fascia thickness (P=0.001) and a lower elasticity modulus value than the elderly volunteers (P=0.000). The elasticity modulus value was significantly lower at the calcaneus insertion than at 1 cm from the insertion in patients with fasciitis (P=0.000) but showed no significantly difference between the two points in the elderly or young volunteers (P=0.172, P=0.126). SWE allows quantitative assessment of the stiffness of the plantar fascia, which decreases with aging and in patients with plantar fasciitis.
International Nuclear Information System (INIS)
Li, D.
2001-01-01
The neoclassical and double tearing modes have been analyzed with related new phenomena in the reversed magnetic shear tokamak plasmas. The instability threshold, and the linear and nonlinear evolution are derived for the neoclassical tearing modes. It is found that the perturbed bootstrap current in the resistive layer has a stabilizing effect while the equilibrium bootstrap current in the outer region can destabilize the modes. The dispersion relation is derived for the double tearing mode. It is found that the onset of ''annular crash'' is due to the fast reconnection of the hot and cold islands, triggered by the interaction of both branches. The onset of ''core crash'' is mainly due to the coalescence between the hot islands, triggered by the explosive growth of the inner branch. (author)
International Nuclear Information System (INIS)
Li Ding
1999-01-01
The neoclassical and double tearing modes have been analyzed with related new phenomena in the reversed magnetic shear tokamak plasmas. The instability threshold, and the linear and nonlinear evolution are derived for the neoclassical tearing modes. It is found that the perturbed bootstrap current in the resistive layer has a stabilizing effect while the equilibrium bootstrap current in the outer region can destabilize the modes. The dispersion relation is derived for the double tearing mode. It is found that the onset of 'annular crash' is due to the fast reconnection of the hot and cold islands, triggered by the interaction of both branches. The onset of 'core crash' is mainly due to the coalescence between the hot islands, triggered by the explosive growth of the inner branch. (author)
Some features of the disruption instability in reversed shear TFTR plasmas
International Nuclear Information System (INIS)
Semenov, I.B.; Mirnov, S.V.; McGuire, K.M.
1999-01-01
The behaviour of MHD perturbations before and during disruptions in TFTR reversed shear plasmas with q min ∼ 2 was analysed. In the q min region, tearing modes, wavelike modes, and mixed tearing plus wavelike modes are followed by disruption. Sometimes a helical snake (helix) appears at the X point of the q min island. The local outward electron energy transport near the X point can be explained by the development of 'positive' magnetic islands (islands with positive current perturbations). It is proposed that the disruption is initiated when the X point of the magnetic islands coincides in one toroidal position near the torus equator. (author)
Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H
2014-03-28
Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100 μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.
Shear strength of end slabs of prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Cheung, K.C.; Gotschall, H.L.; Liu, T.C.
1975-01-01
Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)
Unified theory of ballooning instabilities and temperature gradient driven trapped ion modes
International Nuclear Information System (INIS)
Xu, X.Q.
1990-08-01
A unified theory of temperature gradient driven trapped ion modes and ballooning instabilities is developed using kinetic theory in banana regimes. All known results, such as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning modes (or shear Alfven waves) are readily derived from our single general dispersion relation. Several new results from ion-ion collision and trapped particle modification of ballooning modes are derived and discussed and the interrelationship between those modes is established. 24 refs
Study on shear properties of coral sand under cyclic simple shear condition
Ji, Wendong; Zhang, Yuting; Jin, Yafei
2018-05-01
In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.
Directory of Open Access Journals (Sweden)
2011-03-01
Full Text Available In consequence of an increased interest in using endless carbon fibre reinforced thermoplastic composites (TPC, automated and highly productive processing technologies for cutting and trimming steps of consolidated materials are sought. In this paper, the influence on the thermal effect caused by laser cutting with respect to static strength properties of TPC based on a polyphenylene sulfide (PPS matrix is studied. For the cutting experiments, consolidated TPC laminates at varying thicknesses up to s = 3.1 mm and a disc laser emitting at a wavelength of λ = 1030 nm at a maximum output power of PL = 2 kW are used. For the first time, the resulting magnitude of the heat affected zone (HAZ at the cutting edge of the composite material is correlated with interlaminar shear strength tests. The results are compared to specimens prepared by milling and abrasive water jet cutting. Depending on the laminate thickness, the laser treated TPC samples show comparable properties to those of conventionally processed specimens. A reduced load bearing area, as a consequence of damaged fibre-matrix-adhesion due to laser impact, is identified as main factor for the reduction of interlaminar shear strengths for higher laminate thicknesses.
International Nuclear Information System (INIS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George; Khujadze, George; Tevzadze, Alexander
2015-01-01
Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber
Shear strength of non-shear reinforced concrete elements
DEFF Research Database (Denmark)
Hoang, Cao linh
1997-01-01
The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...
Confinement improvement in H-mode-like plasmas in helical systems
International Nuclear Information System (INIS)
Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.
1993-06-01
The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)
Cross flow response of a cylindrical structure under local shear flow
Directory of Open Access Journals (Sweden)
Yoo-Chul Kim
2009-12-01
Full Text Available The VIV (Vortex-Induced Vibration analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.
Behaviour of porous ductile solids at low stress triaxiality in different modes of deformation
DEFF Research Database (Denmark)
Tvergaard, Viggo
2015-01-01
The effect of low stress triaxiality on ductile failure is investigated for a material subject to pure shear or to stress states in the vicinity of pure shear. Many recent studies of ductile failure under low hydrostatic tension have focused on shear with superposed tension, which can result...... that the behaviour of a porous ductile material at low stress triaxiality depends a great deal on the mode of deformation....
Xu, Yuan; Dai, Feng
2018-03-01
A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.
Convective instability of internal modes in accelerated compressible plasmas
International Nuclear Information System (INIS)
Gratton, Julio; Gratton, F.T.; Gonzalez, A.G.; Buenos Aires Univ.
1988-01-01
A compact second order differential equation for small amplitude magnetohydrodynamic modes of a plasma stratification in a uniform effective gravity field is derived. The steady state includes non uniform density, mass motion, magnetic shear and non isotropic pressure, given by arbitrary profiles. The perturbation treatment is of the magnetohydrodynamic class, with two closure equations for the time evolution of the pressure, in order to encompass ideal MHD, the Chew, Goldberger and Low, and other non isotropic models. As an application a detailed study of the compressible, convective-gravity modes in the ideal isotropic MHD case is presented. Local criteria for the convective instability are first obtained by means of physically intuitive arguments for unidirectional and for sheared magnetic field. In both instances a rigorous variational energy treatment is then provided. In the second case, a criterion analogous to that of Suydam for the pinch is shown to hold for plasma atmospheres. Global internal modes for an isothermal equilibrium with unidirectional magnetic field are then analysed. Stability criteria and growth rates of the unstable modes are studied. Areas of application of the reported results are indicated. (author)
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique
International Nuclear Information System (INIS)
Hinoki, T.; Zhang, W.; Kohyama, A.; Noda, T.
1998-01-01
In order to quantitatively evaluate mechanical properties of fibers, matrices and their interfaces in fiber reinforced SiC/SiC composites, fiber push-out tests have been carried out. From the indentation load vs. displacement relations, the fiber push-out process has been discussed in comparison with the C/C composites and the loads for fiber push-in and those for fiber push-out were estimated. The trends of load-displacement curve of fiber push-out process depended on specimen thickness. The curve in the case of thick specimen had a micro step indicating fiber push-in and a larger step corresponding to fiber push-out. However just a larger step indicating fiber push-out was seen without fiber push-in process in the case of thin specimen. Interfacial shear stress was discussed and defined in both cases. The effects of fiber coatings on interfacial shear stress obtained from thin specimens were analyzed. The relationship between bending stress and interfacial shear stress of SiC (pcs) /SiC (CVI) is preliminarily postulated together with microstructural characteristics of the composites. (orig.)
Smoluchowski coagulation models of sea ice thickness distribution dynamics
Godlovitch, D.; Illner, R.; Monahan, A.
2011-12-01
Sea ice thickness distributions display a ubiquitous exponential decrease with thickness. This tail characterizes the range of ice thickness produced by mechanical redistribution of ice through the process of ridging, rafting, and shearing. We investigate how well the thickness distribution can be simulated by representing mechanical redistribution as a generalized stacking process. Such processes are naturally described by a well-studied class of models known as Smoluchowski Coagulation Models (SCMs), which describe the dynamics of a population of fixed-mass "particles" which combine in pairs to form a "particle" with the combined mass of the constituent pair at a rate which depends on the mass of the interacting particles. Like observed sea ice thickness distributions, the mass distribution of the populations generated by SCMs has an exponential or quasi-exponential form. We use SCMs to model sea ice, identifying mass-increasing particle combinations with thickness-increasing ice redistribution processes. Our model couples an SCM component with a thermodynamic component and generates qualitatively accurate thickness distributions with a variety of rate kernels. Our results suggest that the exponential tail of the sea ice thickness distribution arises from the nature of the ridging process, rather than specific physical properties of sea ice or the spatial arrangement of floes, and that the relative strengths of the dynamic and thermodynamic processes are key in accurately simulating the rate at which the sea ice thickness tail drops off with thickness.
Prediction of wrinklings and porosities of thermoplastic composits after thermostamping
Hamila, Nahiene; Guzman-Maldonado, Eduardo; Xiong, Hu; Wang, Peng; Boisse, Philippe; Bikard, Jerome
2018-05-01
During thermoforming process, the consolidation deformation mode of thermoplastic prepregs is one of the key deformation modes especially in the consolidation step, where the two resin flow phenomena: resin percolation and transverse squeeze flow, play an important role. This occurs a viscosity behavior for consolidation mode. Based on a visco-hyper-elastic model for the characterization of thermoplastic prepregs proposed by Guzman, which involves different independent modes of deformation: elongation mode, bending mode with thermo-dependent, and viscoelastic in-plan shearing mode with thermo-dependent, a viscoelastic model completed with consolidation behavior will be presented in this paper. A completed three-dimensional mechanical behavior with compaction effect for thermoplastic pre-impregnated composites is constituted, and the associated parameters are identified by compaction test. Moreover, a seven-node prismatic solid-shell finite element approach is used for the forming simulation. To subdue transverse shear locking, an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. Indeed, the enhanced assumed strain method and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element's rank deficiency for pinching. An additional node is added at the center providing a quadratic interpolation of the displacement in the thickness direction. The predominance of this element is the ability of three dimensional analysis, especially for the transverse stress existence through the thickness of material, which is essential for the consolidation modelling. Finally, an intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load
International Nuclear Information System (INIS)
Hernelind, Jan
2010-08-01
Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell
Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load
Energy Technology Data Exchange (ETDEWEB)
Hernelind, Jan (5T Engineering AB (Sweden))
2010-08-15
Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell
Directory of Open Access Journals (Sweden)
Joo-Won Kang
2013-10-01
Full Text Available Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.
Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.
Fang, Fei; Lake, Spencer P
2016-10-01
Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kullerud, K.
2009-12-01
At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along
Directory of Open Access Journals (Sweden)
Kohei Fujita
2017-08-01
Full Text Available A system identification (SI problem of high-rise buildings is investigated under restricted data environments. The shear and bending stiffnesses of a shear-bending model (SB model representing the high-rise buildings are identified via the smart combination of the subspace and inverse-mode methods. Since the shear and bending stiffnesses of the SB model can be identified in the inverse-mode method by using the lowest mode of horizontal displacements and floor rotation angles, the lowest mode of the objective building is identified first by using the subspace method. Identification of the lowest mode is performed by using the amplitude of transfer functions derived in the subspace method. Considering the resolution in measuring the floor rotation angles in lower stories, floor rotation angles in most stories are predicted from the floor rotation angle at the top floor. An empirical equation of floor rotation angles is proposed by investigating those for various building models. From the viewpoint of application of the present SI method to practical situations, a non-simultaneous measurement system is also proposed. In order to investigate the reliability and accuracy of the proposed SI method, a 10-story building frame subjected to micro-tremor is examined.
Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K
2015-02-01
An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.
Kellas, S.; Morton, J.; Jackson, K. E.
1991-01-01
The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.
Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm
International Nuclear Information System (INIS)
Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong
2007-01-01
The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification
Observation of anisotropic interlayer Raman modes in few-layer ReS{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Nagler, Philipp; Plechinger, Gerd; Schueller, Christian; Korn, Tobias [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040, Regensburg (Germany)
2016-02-15
ReS{sub 2} has recently emerged as a new member in the rapidly growing family of two-dimensional materials. Unlike MoS{sub 2} or WSe{sub 2}, the optical and electrical properties of ReS{sub 2} are not isotropic due to the reduced symmetry of the crystal. Here, we present layer-dependent Raman measurements of ReS{sub 2} samples ranging from monolayers to ten layers in the ultralow frequency regime. We observe layer breathing and shear modes which allow for easy assignment of the number of layers. Polarization-dependent measurements give further insight into the crystal structure and reveal an energetic shift of the shear mode which stems from the in-plane anisotropy of the shear modulus in this material. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Moulik, P.; Ekström, G.
2014-12-01
We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and
Importance of Tensile Strength on the Shear Behavior of Discontinuities
Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.
2012-05-01
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.
Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes
Energy Technology Data Exchange (ETDEWEB)
Gui, B. [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Lawerence Livermore National Lab, Livermore, California 94550 (United States); Xu, X. Q. [Lawerence Livermore National Lab, Livermore, California 94550 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corporation, Boulder, Colorado 80301 (United States)
2014-11-15
The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.
Monitoring the lesion formation during histotripsy treatment using shear wave imaging
Arnal, Bastien; Lee, Wei-Ning; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-11-01
Monitoring the lesion formation induced by histotripsy has mainly relied on the quantitative change in backscatter intensity using ultrasound B-mode imaging. However, how the mechanical properties of the histotripsy-treated tissue region alter during the procedure is yet to be fully investigated. We thus proposed here to monitor such a therapeutic process based on shear modulus estimated by shear wave imaging (SWI). In the therapeutic procedure, a single-element piezo-composite focused transducer (Imasonic, Besançon, France) with a center frequency of 660 kHz, a focal length of 45 mm, and an fnumber of 1 was driven by a function generator (AFG 3101, Tektronix, Beaverton, OR) and a gated RF power amplifier (GA-2500A, RITEC Inc., USA) to generate ultrasound histotripsy pulses. Histotripsy pulses were delivered for 20 seconds and then followed by a 30-second pause and a rapid monitoring step. Such a treatment and monitoring scheme was repeated for 10 mins. Both the reference measurement and monitoring were realized by SWI, where plane shear waves were generated by an 8 MHz linear array probe connected to a prototype ultrasound scanner, and acquired at a frame rate of 10000 Hz. Shear modulus was estimated and mapped in 2D through a time-of-flight algorithm. Gelatin (8%)-agar (2%) phantoms and ex-vivo porcine liver samples were tested. Regions of interests (ROI's) of 2 mm-by-2 mm in both untreated and treated regions were selected to compute the contrast-to-noise ratio (CNR). In all three scenarios where different PD's and PRF's were implemented, during the first 100 seconds of the treatment, 50% decrease in the shear modulus within the histotripsy-targeted zone was already observed, and the CNR of the shear modulus increased by 18 dB. In contrast, the backscatter intensity began to reduce and the corresponding CNR was found to increase by 6 dB only after 120 seconds of treatment. The results demonstrated that SWI can map quantitatively the change of mechanical
Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy
International Nuclear Information System (INIS)
Berryman, J G
2004-01-01
A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluidmechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2x2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall mechanical system. The analysis shows, for example, that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some rocks--including Spirit River sandstone and Schuler-Cotton Valley sandstone
Structure of high and low shear-stress events in a turbulent boundary layer
Gomit, G.; de Kat, R.; Ganapathisubramani, B.
2018-01-01
Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.
Effects of ion temperature fluctuations on the stability of resistive ballooning modes
International Nuclear Information System (INIS)
Singh, R.; Nordman, H.; Jarmen, A.; Weiland, J.
1996-01-01
The influence of ion temperature fluctuations on the stability of resistive drift- and ballooning-modes is investigated using a two-fluid model. The Eigenmode equations are derived and solved analytically in a low beta model equilibrium. Parameters relevant to L-mode edge plasmas from the Texas Experimental Tokamak are used. The resistive modes are found to be destabilized by ion temperature fluctuations over a broad range of mode numbers. The scaling of the growth rate with magnetic shear and mode number is elucidated. 13 refs, 4 figs
Shear Resistance Capacity of Interface of Plate-Studs Connection between CFST Column and RC Beam
Directory of Open Access Journals (Sweden)
Qianqian Wang
2017-01-01
Full Text Available The combination of a concrete-filled steel tube (CFST column and reinforced concrete (RC beam produces a composite structural system that affords good structural performance, functionality, and workability. The effective transmission of moments and shear forces from the beam to the column is key to the full exploitation of the structural performance. The studs of the composite beam transfer the interfacial shear force between the steel beam and the concrete slab, with the web bearing most of the vertical shear force of the steel beam. In this study, the studs and vertical steel plate were welded to facilitate the transfer of the interfacial shear force between the RC beam and CFST column. Six groups of a total of 18 specimens were used to investigate the shear transfer mechanism and failure mode of the plate-studs connection, which was confirmed to effectively transmit the shear forces between the beam and column. The results of theoretical calculations were also observed to be in good agreement with the experimental measurements.
Coupling between shear and bending in the analysis of beam problems: Planar case
Shabana, Ahmed A.; Patel, Mohil
2018-04-01
The interpretation of invariants, such as curvatures which uniquely define the bending and twist of space curves and surfaces, is fundamental in the formulation of the beam and plate elastic forces. Accurate representations of curve and surface invariants, which enter into the definition of the strain energy equations, is particularly important in the case of large displacement analysis. This paper discusses this important subject in view of the fact that shear and bending are independent modes of deformation and do not have kinematic coupling; this is despite the fact that kinetic coupling may exist. The paper shows, using simple examples, that shear without bending and bending without shear at an arbitrary point and along a certain direction are scenarios that higher-order finite elements (FE) can represent with a degree of accuracy that depends on the order of interpolation and/or mesh size. The FE representation of these two kinematically uncoupled modes of deformation is evaluated in order to examine the effect of the order of the polynomial interpolation on the accuracy of representing these two independent modes. It is also shown in this paper that not all the curvature vectors contribute to bending deformation. In view of the conclusions drawn from the analysis of simple beam problems, the material curvature used in several previous investigations is evaluated both analytically and numerically. The problems associated with the material curvature matrix, obtained using the rotation of the beam cross-section, and the fundamental differences between this material curvature matrix and the Serret-Frenet curvature matrix are discussed.
International Nuclear Information System (INIS)
Higuchi, Hidetoshi; Kitagaki, Toru; Koizumi, Kenji; Hirano, Hiroyasu; Takeuchi, Masayuki; Washiya, Tadahiro; Kawabe, Yukinari; Kobayashi, Tsuguyuki
2011-01-01
Japan Atomic Energy Agency (JAEA) and The Japan Atomic Power Company (JAPC) have been developing an advanced head-end process based on mechanical disassembly and short stroke shearing systems as a part of Fast Reactor Cycle Technology Development (FaCT). Fuel pins for a fast reactor are installed within a hexagonal shaped wrapper tube made of stainless steel. In order to reprocess the fast reactor fuel pins, they must be removed from the wrapper tube and transported to the shearing system without failure. In addition, the advanced aqueous reprocessing process, called 'NEXT' (New Extraction System for TRU Recovery) process requires a solution of the spent fuel with relatively high concentration (500g/L). JAEA and JAPC have developed the mechanical disassembly and the short stroke shearing technology which is expected to make fragmented fuel to satisfy these requirements. This paper reports the results of engineering scale tests on the mechanical disassembly and short stroke shearing systems. These tests were carried out with simulated FBR fuel assembly and removed pins. The mechanical cutting method has been developed to avoid fuel pin failure during disassembly operation. The cutting process is divided into two modes, so called 'slit-cut' for cutting the wrapper tube and 'crop-cut' for the end plug region of the fuel pin bundle. In the slit-cut mode, the depth of cutting was automatically controlled based on the calculated wastage of the cutting tool and deformation of the wrapper tube which had been measured before the cutting. This procedure was confirmed to minimize the fuel pin failure which was hard to prevent in the case of laser cutting. The cutting speed was also controlled automatically by the electric current of the cutting motor to lower the load of the cutting tool. The removed fuel pins were transported to the shearing machine, whose fuel shearing magazine width was set to be narrow to realize the suitable configuration for the short stroke shearing
Accurate thickness measurement of graphene
International Nuclear Information System (INIS)
Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T
2016-01-01
Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)
International Nuclear Information System (INIS)
Breizman, B.N.; Sharapov, S.E.
1994-10-01
The structure of toroidicity-induced Alfven eigenmodes (TAE) and kinetic TAE (KTAE) with large mode numbers is analyzed and the linear power transfer from energetic particles to these modes is calculated in the low shear limit when each mode is localized near a single gap within an interval whose total width Δ out is much smaller than the radius r m of the mode location. Near its peak where most of the mode energy is concentrated, the mode has an inner scalelength Δ in , which is much smaller than Δ out . The scale Δ in is determined by toroidicity and kinetic effects, which eliminate the singularity of the potential at the resonant surface. This work examines the case when the drift orbit width of energetic particles Δ b is much larger than the inner scalelength Δ in , but arbitrary compared to the total width of the mode. It is shown that the particle-to-wave linear power transfer is comparable for the TAE and KTAE modes in this case. The ratio of the energetic particle contributions to the growth rates of the TAE and KTAE modes is then roughly equal to the inverse ratio of the mode energies. It is found that, in the low shear limit the growth rate of the KTAE modes can be larger than that for the TAE modes
The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy
Directory of Open Access Journals (Sweden)
Bin Tang
2018-02-01
Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.
Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin
Directory of Open Access Journals (Sweden)
Prabhakar A
2008-12-01
Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.
Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation
International Nuclear Information System (INIS)
Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.
1982-03-01
Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)
Modes of continental extension in a crustal wedge
Wu, Guangliang
2015-07-01
© 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.
Modes of continental extension in a crustal wedge
Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo
2015-01-01
© 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.
Experimental study of shear rate dependence in perpetually sheared granular matter
Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai
2017-06-01
We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.
Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M
2009-04-17
For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.
International Nuclear Information System (INIS)
Suwanna, S.; Onjun, T.; Wongpan, P.; Parail, V.; Poolyarat, N.; Picha, R.
2009-01-01
Full text: A formation of a steep pressure gradient region near the plasma edge, called the pedestal, is a main reason for an improved performance in H-mode plasma. In this work, new pedestal temperature models are developed based on different theoretical-based width concepts: flow shear stabilization width concept, magnetic and flow shear stabilization width concept, and diamagnetic stabilization width concept. In the BALDUR code, each pedestal width model is combined with a ballooning mode pressure gradient model to predict the pedestal temperature, which is a boundary condition needed to predict plasma profiles. In the JETTO code, an anomalous transport is suppressed within the pedestal region, which results in a formation of a steep pressure gradient region. The pedestal width is predicted using these theoretically based width concepts. The plasma profiles in the pedestal region are limited by ELM crashes, which can be triggered either by ballooning modes or by peeling modes, depending on which instability is destabilized first. It is found in the BALDUR simulations that the simulated pedestal temperature profiles agree well with experimental data in the region close to the pedestal, but show larger deviation in the core region. In a preliminary investigation, these models agree reasonably well with experiments, yielding overall RMS less than 20%. Furthermore, the model based flow shear stabilization matches very well data from both DIII-D and JET, while the model based on magnetic and flow shear stabilization over-predicts results from JET and under-predicts those from DIII-D. Other statistical analyses such a calculation of offset values, ratios of predicted pedestal (resp. core) temperatures to those from experiments are performed. (author)
The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM
Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa
2008-06-01
This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.
Nonlinear saturation of the trapped-ion mode by mode coupling in two dimensions
International Nuclear Information System (INIS)
Cohen, B.I.; Tang, W.M.
1977-01-01
A study of the nonlinear saturation by mode coupling of the dissipative trapped-ion mode is presented in which both radial and poloidal variations are considered. The saturation mechanism consists of the nonlinear coupling via E x B convection of energy from linearly unstable modes to stable modes. Stabilization is provided at short poloidal wavelengths by Landau damping from trapped and circulating ions, at short radial wavelengths by effects associated with the finite ion banana excursions and at long wavelengths by ion collisions. A one-dimensional, nonlinear partial differential equation for the electrostatic potential derived in earlier work is extended to two dimensions and to third order in amplitude. Included systematically are kinetic effects, e.g., Landau damping and its spatial dependence due to magnetic shear. The stability and accessibility of equilibria are considered in detail for cases far from as well as close to marginal stability. In the first case three-wave interactions are found to be important when the spectrum of unstable modes is sufficiently narrow. In the latter case, it is found that for a single unstable mode, a four-wave interaction can provide the dominant saturation mechanism. Cross-field transport is calculated, and the scaling of results is considered for tokamak parameters
MHD studies in FTU plasmas with low and negative magnetic shear
International Nuclear Information System (INIS)
Buratti, P.; Alladio, F.; Bracco, G.
1999-01-01
Fast current ramps with central ECRH and pellet injection in ohmic plasmas allowed to study several kinds of MHD instabilities in plasmas with peaked pressure profile and low or negative magnetic shear. Double tearing modes were systematically observed when the minimum q value crossed the q min =2 value; such modes either ended into full core reconnection, or saturated at a large amplitude, with a displacement involving more than one third of the plasma radius. Macroscopic fluctuations clamp the peak temperature during central ECRH; the cause of such fluctuations is attributed to MHD modes that are excited when q min is close to a low order rational value; gaps in the distribution of such values can explain the effective transport barriers observed near integer q min values. When q min ∼1 either sawteeth or saturated internal kink modes are observed. (author)
Nonlinear MHD and energetic particle modes in stellarators
International Nuclear Information System (INIS)
Strauss, H.R.
2002-01-01
The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When beta exceeds a threshold, low poloidal mode number (m=6∼18) modes grow exponentially, clearly distinguishable from the equilibrium evolution. Simulations of NCSX have beta limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. With sufficient viscosity, the growth rate becomes slow enough to allow calculations of magnetic island evolution. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two - period compact stellarator obtained a predominantly n=1 toroidal mode with about the expected TAE frequency. Work is in progress to study fast ion-driven Alfven modes in NCSX. (author)
Extremely high wall-shear stress events in a turbulent boundary layer
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
Experimental study of shear rate dependence in perpetually sheared granular matter
Directory of Open Access Journals (Sweden)
Liu Sophie Yang
2017-01-01
Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.
2004-12-01
Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during
A novel rheo-optical device for studying complex fluids in a double shear plate geometry
Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle
2013-01-01
A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s-1), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD® promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non
Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.
McAleavey, Stephen
2011-01-01
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.
A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress
Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi
2014-11-01
A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.
Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae
2014-02-20
To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.
Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves
DEFF Research Database (Denmark)
Goutianos, Stergios
2016-01-01
A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...
The effect of convection and shear on the damping and propagation of pressure waves
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection
Park, Jinkee; Kwon, Yoochan; Park, Hyuntea
2017-11-01
Sarcopenic obesity (SO) is closely associated with cardiovascular disease (CVD) in elderly women. Increases in body fat and decreases in muscle mass are closely associated with increased carotid intima-media thickness (CIMT). The aim of this study was to examine the influence of a 24-week aerobic and resistance training program on carotid parameters in SO. Fifty elderly women (74.1±6.1 years) with SO were randomly divided into an exercise group and a control group. The exercise group performed combined exercise over 24 weeks, consisting of resistance and aerobic training for 50-80 min, 5 times a week. Carotid variables were measured using B-mode ultrasound. The differences in the carotid variables and the relative changes between baseline and after 24 weeks were evaluated. In the analysis of variance (ANOVA) results, CIMT (p=0.013), systolic flow velocity (p=0.007), diastolic flow velocity (p=0.006), and wall shear rate (p=0.010) showed significant interactions. In paired t-test results of the exercise group, CIMT significantly decreased (p＜0.01) and systolic flow velocity (p＜0.01), diastolic flow velocity (p＜0.001), and wall shear rate (p＜0.05) significantly increased after 24 weeks. The 24-week combined exercise effectively decreased CIMT and increased carotid flow velocity and wall shear ratio. Therefore, combined exercise is thought to contribute to the improvement of the risk of CVD in elderly women with SO.
Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates
Directory of Open Access Journals (Sweden)
Emad Hosseinpour
2015-01-01
Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.
Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices
Firpo, Marie-Christine; Constantinescu, Dana
2012-10-01
The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
Development of design method of thick rubber bearings for three-dimensional base isolation
International Nuclear Information System (INIS)
Yabana, Shuichi; Matuda, Akihiro
2000-01-01
Thick rubber bearings as 3-dimensional base isolators have been developed to reduce both horizontal and vertical seismic loads especially for equipment in Fast Breeder Reactors. In this report, a design method of thick rubber bearings is presented. To consider nonlinearity of vertical stiffness affected by vertical stress in the design of thick rubber bearings, Lindley's evaluation method of vertical stiffness is modified as an explicit form of vertical stress. We confirm that the presented method is efficient for design of the thick rubber bearings from comparing between test results and predicted values. Furthermore, rubber bearing tests are conducted with 1/3 scale models to evaluate mechanical properties of thick rubber bearings including ultimate limits. In the tests, horizontal and vertical characteristics of 1/3 scale model are compared with those of 1/6 scale model to discuss scale effect of test specimen. Ultimate limits such as failure shear strain of thick rubber bearings are obtained under various loading conditions. From the test results, we confirm that full scale thick rubber bearing to satisfy requirements is feasible. (author)
International Nuclear Information System (INIS)
Shin, Jeong Woo; Lee, Young Shin
2011-01-01
The dynamic propagation of an interface crack between two functionally graded material (FGM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGM layers vary continuously along their thicknesses. The properties of the two FGM layers vary and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. The Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGM to show the effect of the gradient of material properties, crack moving velocity, and thickness of FGM layers. The following are helpful to increase resistance to interface crack propagation in FGMs: a) increasing the gradient of material properties, b) an increase of shear modulus and density from the interface to the upper and lower free surface, and c) increasing the thickness of the FGM layer. The DERR increases or decreases with increase of the crack moving velocity
Complete mode-set stability analysis of magnetically insulated ion diode equilibria
International Nuclear Information System (INIS)
Slutz, S.A.; Lemke, R.W.
1993-01-01
We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform
Organizational Modes of Severe Wind-producing Convective Systems over North China
Yang, Xinlin; Sun, Jianhua
2018-05-01
Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind (SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events (and their proportions) were cluster cells (35.4%), squall lines (18.4%), nonlinear-shaped systems (17.8%), broken lines (11.6%), individual cells (1.2%), and bow echoes (0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.
Failure Modes of thin supported Membranes
DEFF Research Database (Denmark)
Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette
2007-01-01
Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....